Параллельность прямых и их перпендикулярность к плоскости. Перпендикулярные прямые в пространстве

Занятие 3.2.1

Перпендикулярность прямых.

Перпендикуляр и наклонная.

Теорема о трех перпендикулярах.

Определение: Две прямые в пространстве называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен 90 градусов.

Обозначение . .

Рассмотрим прямые а и b .

Прямые могут пересекаться, скрещиваться, быть параллельными. Для того, чтобы построить угол между ними нужно выбрать точку и через нее провести прямую a`, параллельную прямой а, и прямую b` , параллельную прямой b .

Прямые a` и b` пересекаются. Угол между ними и есть угол между прямыми а и b. Если угол равен 90°, то прямыеа и b перпендикулярны.

Лемма: Если одна из двух прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Доказательство:

Возьмем произвольную точку М . Через точку М проведем прямую a` , параллельную прямой а и прямую c` , параллельную прямой c . Тогда угол АМС равен 90°.

Прямая b параллельна прямой а по условию, прямая a` параллельна прямой а по построению. Значит, прямые a` и b параллельны.

Имеем, прямые и b параллельны, прямые с и параллельны по построению. Значит, угол между прямыми b и с – это угол междупрямыми a` и b`, то есть угол АМС , равный 90°. Значит, прямые b и с перпендикулярны, что и требовалось доказать.

Перпендикулярность прямой и плоскости.

Определение: Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

Свойство: Если прямая перпендикулярна к плоскости, то она пересекает эту плоскость.

(Если a ┴ α, тоa ∩ α.)

Напоминание . Прямая и плоскость или пересекаются в одной точке, или параллельны, или прямая лежит в плоскости.

Свойства перпендикулярных прямых и плоскости:

Теорема: Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.

На первом занятии мы изучали Лемму – если одна из параллельных прямых пересекает плоскость, то и другая параллельная прямая пересекает плоскость. Прямая а пересекаетподуглом 90 0 , т.е перпендикулярна, то и другаяпараллельнаяпрямая – перпендикулярна

Теорема: Если две прямые перпендикулярны к плоскости, то они параллельны.

Признак перпендикулярности прямой и плоскости

Теорема: Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к плоскости


Теорема: Через любую точку пространства проходит прямая, перпендикулярная к данной плоскости и притом только одна.

План-конспект урока по геометрии в 10 классе на тему «Перпендикулярность прямой и плоскости»

Цели урока:

обучающие

    введение признака перпендикулярности прямой и плоскости;

    формировать представления учащихся о перпендикулярности прямой и плоскости, их свойствах;

    формировать умения учащихся решать типичные задачи по теме, умения доказывать утверждения;

развивающие

    развивать самостоятельность, познавательную активность;

    развивать умение анализировать, делать выводы, систематизировать полученную информацию,

    развивать логическое мышление;

    развивать пространственное воображение.

воспитательные

    воспитание культуры речи учащихся, усидчивости;

    прививать учащимся интерес к предмету.

Тип урока: Урок изучения и первичного закрепления знаний.

Формы работы учащихся: фронтальный опрос.

Оборудование: компьютер, проектор, экран.

Литература: «Геометрия 10-11», Учебник. Атанасян Л.С. и др.

(2009, 255с.)

План урока:

Организационный момент (1 минуты);

Актуализация знаний (5 минут);

Изучение нового материала (15 минут);

Первичное закрепление изученного материала (20 минуты);

Подведение итогов (2 минуты);

Домашнее задание (2 минуты).

Ход урока.

Организационный момент (1 минуты)

Приветствие учеников. Проверка готовности учащихся к уроку: проверка наличия тетрадей, учебников. Проверка отсутствующих на уроке.

Актуализация знаний (5 минут)

Учитель. Какая прямая называется перпендикулярной к плоскости?

Ученик. Прямая перпендикулярная любой прямой лежащей в этой плоскости называется прямой перпендикулярной этой плоскости.

Учитель. Как звучит лемма о двух параллельных прямых перпендикулярных третьей?

Ученик. Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Учитель. Теорема о перпендикулярности двух параллельных прямых к плоскости.

Ученик. Если одна из двух параллельных прямых перпендикулярна к плоскости, то и вторая прямая перпендикулярна к этой плоскости.

Учитель. Как звучит теорема обратная данной?

Ученик. Если две прямые перпендикулярный одной и той же плоскости, то они параллельны.

Проверка домашнего задания

Домашнее задание проверяется, если у учеников возникли трудности при его решении.

Изучение нового материала (15 минут)

Учитель. Мы с вами знаем, что если прямая перпендикулярная к плоскости, то она будет перпендикулярна к любой прямой лежащей в этой плоскости, но в определении перпендикулярность прямой к плоскости дается как факт. На практике же часто приходится определить будет ли являться прямая перпендикулярной к плоскости или нет. Такие примеры можно привести из жизни: при строительстве зданий сваи вбивают перпендикулярно поверхности земли, иначе конструкция может рухнуть. Определением прямой перпендикулярной плоскости в этом случае воспользоваться невозможно. Почему? Сколько прямых можно провести в плоскости?

Ученик. В плоскости можно провести бесконечно много прямых

Учитель. Правильно. И проверить перпендикулярность прямой к каждой отдельной плоскости невозможно, так как это займет бесконечно много времени. Для того чтобы понять является ли прямая перпендикулярной к плоскости введем признак перпендикулярности прямой и плоскости. Запишите в тетради. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Запись в тетради. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Учитель. Таким образом нам нет необходимости проверять перпендикулярность прямой для каждой прямой плоскости, достаточно проверить перпендикулярность лишь для двух прямых этой плоскости.

Учитель. Давайте докажем это признак.

Дано: p и q – прямые, p q = O , a p , a q , p ϵ α, q ϵ α.

Доказать: a α.

Учитель. И все таки для доказательства воспользуемся определением прямой перпендикулярной плоскости, как оно звучит?

Ученик. Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой лежащей в этой плоскости.

Учитель. Правильно. Начертим в плоскости α любую прямую m . Проведем через точку О прямую l ║ m . На прямой a отметим точки А и В так чтобы точка О была серединой отрезка АВ. Проведем прямую z таким образом, чтобы она пересекала прямые p , q , l , точки пересечения этих прямых обозначим P , Q , L соответственно. Соединим концы отрезка АВ с точками P ,Q и L .

Учитель. Что мы можем сказать о треугольниках ∆APQ и ∆BPQ ?

Ученик. Эти треугольники будут равны (по 3 признаку равенства треугольников).

Учитель. Почему?

Ученик. Т.к. прямые p и q – серединные перпендикуляры, то AP = BP , AQ = BQ , а сторона PQ – общая.

Учитель. Правильно. Что мы можем сказать о треугольниках ∆APL и ∆BPL ?

Ученик. Эти треугольники тоже будут равны (по 1 признаку равенства треугольников).

Учитель. Почему?

Ученик. AP = BP , PL – общая сторона, APL =  BPL (из равенства ∆ APQ и ∆ BPQ )

Учитель. Правильно. А значит AL = BL . Значит каким будет ∆ALB ?

Ученик. Значит ∆ALB будет равнобедренным.

Учитель. LO – медиана в ∆ALB , значит чем она будет являться в этом треугольнике?

Ученик. Значит LO будет являться еще и высотой.

Учитель. Следовательно прямая l будет перпендикулярна прямой a . А так как прямая l – любая прямая принадлежащая плоскости α, то по определению прямая a α. Что и требовалось доказать.

Доказывается при помощи призентации

Учитель. А что делать если прямая a не пересекает точку О, но остается перпендикулярной к прямым p и q ? Если прямая а пересекает любую другую точку данной плоскости?

Ученик. Можно построить прямую а 1 , которая будет параллельна прямой а, будет пересекать точку О, а по лемме о двух параллельных прямых перпендикулярных третьей можно доказать, что a 1 ⊥ p , a 1 ⊥ q .

Учитель. Правильно.

Первичное закрепление изученного материала (20 минут)

Учитель. Для того чтобы закрепить изученный нами материал решим номер 126. Прочтите задание.

Ученик. Прямая МВ перпендикулярна к сторонам АВ и ВС треугольника АВС. Определите вид треугольника МВD , где D – произвольная точка прямой АС.

Рисунок.

Дано: ∆ ABC , MB BA , MB BC , D ϵ AC .

Найти: ∆MBD.

Решение.

Учитель. Можно через вершины треугольника провести плоскость?

Ученик. Да, можно. Плоскость можно провести по трем точкам.

Учитель. Как будут расположены прямые ВА и СВ относительно этой плоскости?

Ученик. Эти прямые будут лежать в этой плоскости.

Учитель. Получается, что мы имеем плоскость, и в ней две пересекающиеся прямые. Как относится прямая МВ к этим прямым?

Ученик. Прямая МВ ⊥ ВА, МВ ⊥ ВС.

Запись на доске и в тетрадях. Т.к. МВ ⊥ ВА, МВ ⊥ ВС

Учитель. Если прямая перпендикулярна двум пересекающимся прямым лежащим в плоскости, то прямая будет относится к этой плоскости?

Ученик. Прямая МВ будет перпендикулярна плоскости АВС.

⊥ АВС.

Учитель. Точка D – произвольная точка на отрезке АС, значит как будет относится прямая BD к плоскости АВС?

Ученик. Значит BD принадлежит плоскости АВС.

Запись на доске и в тетрадях. Т.к. BD ϵ ABC

Учитель. Какими относительно друг друга будут являться прямые МВ и BD ?

Ученик. Эти прямые будут перпендикулярны по определению прямой перпендикулярной к плоскости.

Запись на доске и в тетрадях. ↔ МВ ⊥ BD

Учитель. Если МВ перпендикулярно BD , то каким будет треугольник MBD ?

Ученик. Треугольник MBD будет прямоугольным.

Запись на доске и в тетрадях. ↔ ∆MBD – прямоугольный.

Учитель. Правильно. Решим номер 127. Прочтите задание.

Ученик. В треугольнике ABC сумма углов A и B равна 90°. Прямая BD перпендикулярна к плоскости ABC . Докажите, что CD AC.

Ученик выходит к доске. Рисует чертеж.

Запись на доске и в тетради.

Дано: ∆ ABC ,  A +  B = 90°, BD ABC .

Докажите: CD AC .

Доказательство:

Учитель. Чему равна сумма углов треугольника?

Ученик. Сумма углов в треугольнике равна 180°.

Учитель. Чему будет равен угол C в треугольнике ABC ?

Ученик. Угол C в треугольнике ABC будет равен 90°.

Запись на доске и в тетрадях.  C = 180° - A - B = 90°

Учитель. Если угол С равен 90°, то как относительно друг друга будут располагаться прямые АС и ВС?

Ученик. Значит АС ⊥ ВС.

Запись на доске и в тетрадях. ↔ АС ⊥ ВС

Учитель. Прямая BD перпендикулярна плоскости ABC . Что из этого следует?

Ученик. Значит BD перпендикулярно любой прямой из ABC .

BD ⊥ ABC BD перпендикулярно любой прямой из ABC (по определению)

Учитель. В соответствии с этим, как будут относится прямые BD и AC ?

Ученик. Значит эти прямые будут перпендикулярны.

BD ⊥ AC

Учитель. АС перпендикулярно двум пересекающимся прямым лежащим в плоскости DBC , но АС не проходит через точку пересечения. Как это исправить?

Ученик. Через точку В проведем прямую а параллельную АС. Так как АС перпендикулярно BC и BD , то и а будет перпендикулярно BC и BD по лемме.

Запись на доске и в тетрадях. Через точку В проведем прямую а ║АС ↔ а ⊥ BC , а ⊥ BD

Учитель. Если прямая а будет перпендикулярно BC и BD , то что можно сказать о взаимном расположении прямой а и плоскости BDC ?

Ученик. Значит прямая а будет перпендикулярна плоскости BDC , а значит и прямая АС будет перпендикулярна BDC .

Запись на доске и в тетрадях. ↔ а ⊥ BDC ↔ АС ⊥ BDC .

Учитель. Если АС перпендикулярна BDC , то как относительно друг друга будут располагаться прямые АС и DC ?

Ученик. АС и DC будут перпендикулярны по определению прямой перпендикулярной к плоскости.

Запись на доске и в тетрадях. Т.к. АС ⊥ BDC ↔ АС ⊥ DC

Учитель. Молодец. Решим номер 129. Прочитайте задание.

Ученик. Прямая AM перпендикулярна к плоскости квадрата ABCD , диагонали которого пересекаются в точке О. Докажите, что: а) прямая BD перепендикулярна к плоскости AMO ; б) MO BD .

К доске выходит ученик. Рисует чертеж.

Запись на доске и в тетради.

Дано: ABCD – квадрат, AM ABCD , AC BD = O

Доказать: BD AMO, MO BD

Доказательство:

Учитель. Нам нужно доказать чтопрямая BD AMO . Какие условия для этого должны выполняться?

Ученик. Нужно чтобы прямая BD была перпендикулярна хотябы двум пересекающимся прямым из плоскости AMO .

Учитель. В условии сказано что BD перпендикулярна двум пересекающимся прямым из AMO ?

Ученик. Нет.

Учитель. Но мы знаем, что AM перпендикулярна ABCD . Какой вывод можно из этого сделать?

Ученик. Значит, что AM перпендикулярна любой прямой из этой плоскости, тоесть AM перпендикулярна BD .

AM ABCD AM BD (по определению).

Учитель. Одна прямая перпендикулярна BD есть. Обратите внимание на квадрат, как будут распологаться относительно друг друга прямые AC и BD ?

Ученик. AC будет перпендикулярна BD по свойству диагоналей квадрата.

Запись на доске и в тетради. Т.к. ABCD – квадрат, то AC BD (по свойству диагоналей квадрата)

Учитель. Мы нашли две пересекающиеся прямые лежащие в плоскости AMO перпендикулярные прямой BD . Что из этого следует?

Ученик. Значит, что BD перпендикулярна плоскости AMO .

Запись на доске и в тетрадях. Т.к. AC BD и AM BD BD AMO (по признаку)

Учитель. Какая прямая называется прямой перпендикулярной к плоскости?

Ученик. Прямая называется перпендикулярной к плоскости, если она перпендикулярна любой прямой из этой плоскости.

Учитель. А значит как взаимо расположены прямые BD и OM ?

Ученик. Значит BD перпендикулярно OM . Что и требовалось доказать.

Запись на доске и в тетрадях. ↔ BD MO (по определению). Что и требовалось доказать.

Подведение итогов (2 минуты)

Учитель. Сегодня мы изучили признак перпендикулярности прямой и плоскости. Как он звучит?

Ученик. Если прямая перпендикулярна двум пересекающимся прямым лежащим в плоскости, то эта прямая перпендикулярна этой плоскости.

Учитель. Правильно. Мы научились применять этот признак при решении задач. Кто отвечал у доски и помогал с места молодцы.

Домашнее задание (2 минуты)

Учитель. Параграф 1, пункты 15 -17, учить: лемму, определение и все теоремы. №130, 131.

Усеченный конус и его свойства. Площадь полной и боковой усеченного конуса.

Билет № 21.

Теорема об отрезках параллельных прямых, заключенных между параллельными плоскостями.

Пирамида. Площадь полной и боковой поверхности пирамиды. Объем пирамиды.

Билет № 22.

Теоремы о линии пересечения плоскостей: одна из которых проходит через прямую, параллельную другой плоскости; каждая из которых проходит через одну из двух параллельных прямых.

Признак выпуклого многогранника. Понятие о развертке многогранника.

Теорема - признак выпуклого многогранника (обратная теорема). Если многогранник лежит по одну сторону от каждой своей грани, то он выпуклый.

Доказательство (от противного):

1) Пусть многогранник М лежит по одну сторону от плоскости каждой своей грани. Допустим, что многогранник не выпуклый. Тогда найдутся такие две точки А и В, что на отрезке АВ есть точка Х, не принадлежащая М. α - плоскость, содержащая грань выпуклого многогранника. Допустим, что многогранник не лежит по одну сторону от плоскости α. Тогда существуют две такие точки А и В, которые лежат по разные стороны от плоскости α. Соединим точки А и В со всеми точками грани Q, лежащей в плоскости α. Получен многогранник M 1 , состоящий из двух пирамид с вершинами А и В и общим основанием Q. Эти пирамиды образованы отрезками АХ и ВХ, где Х - любая точка грани Q.

2) Поскольку исходный многогранник М выпуклый, то точки отрезков АХ и ВХ, то есть все точки многогранника M 1 являются внутренними точками многогранника М. Иначе многогранник M 1 целиком содержится внутри многогранника М. Это означает, что внутренние точки многоугольника Q лежат внутри многогранника M 1 и многогранника М. Это невозможно, так как многоугольник Q - грань выпуклого многогранника М, а каждая точка этой грани является граничной точкой многогранника. Противоречие. Допущение неверно. Следовательно, точки А и В не лежат по разные стороны от выбранной грани. Многогранник выпуклый по определению.

Поверхностью многогранника является фигура, составленная из конечного числа многоугольников, которые прикладываются друг к другу равными сторонами, и каждая сторона любого из этих многоугольников является общей только для двух из них. Такую фигуру называют замкнутой многогранной поверхностью .

Если модель многогранника разрезать по некоторым ребрам и развернуть на плоскости, то получится многоугольник, который называется разверткой данного многогранника .

Многоугольники, составляющие развертку многогранника, называются гранями развертки , стороны этих многоугольников - ребрами развертки , вершины многоугольников - вершинами развертки , причем склеиваемые стороны многоугольников считаются за одно ребро, а склеиваемые вершины - за одну вершину.

Для того чтобы из данной развертки можно было склеить выпуклый многогранник, необходимо выполнение следующих условий:

1) Условие замкнутости : каждая сторона каждого многоугольника развертки должна склеиваться еще с какой-либо одной стороной одного и только одного другого многоугольника (называемого смежным с данным).

2) Условие Эйлера : если развертка состоит из Г граней, В вершин и Р ребер, то выполняется теорема Декарта-Эйлера.

3) Условие выпуклости : сумма внутренних углов многоугольников (граней) при каждой из вершин развертки должна быть меньше 360°.

Билет № 23.

Теорема о прямой, параллельной каждой из двух пересекающихся плоскостей.

Параллелепипед: его свойства и виды. Объем параллелепипеда.

Билет № 24.

Теоремы о прямых, перпендикулярных плоскости.

На этом уроке мы повторим теорию и докажем теорему-признак перпендикулярности прямой и плоскости.
В начале урока вспомним определение прямой, перпендикулярной к плоскости. Далее рассмотрим и докажем теорему-признак перпендикулярности прямой и плоскости. Для доказательства этой теоремы вспомним свойство серединного перпендикуляра.
Далее решим несколько задач на перпендикулярность прямой и плоскости.

Тема: Перпендикулярность прямой и плоскости

Урок: Признак перпендикулярности прямой и плоскости

На этом уроке мы повторим теорию и докажем теорему-признак перпендикулярности прямой и плоскости .

Определение . Прямая а называется перпендикулярной к плоскости α, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Доказательство .

Пусть нам дана плоскость α. В этой плоскости лежат две пересекающиеся прямые p и q . Прямая а перпендикулярна прямой p и прямой q . Нам нужно доказать, что прямая а перпендикулярна плоскости α, то есть, что прямая а перпендикулярна любой прямой, лежащей в плоскости α.

Напоминание .

Для доказательства нам нужно вспомнить свойства серединного перпендикуляра к отрезку. Серединный перпендикуляр р к отрезку АВ - это геометрическое место точек, равноудаленных от концов отрезка. То есть, если точка С лежит на серединном перпендикуляре р, то АС = ВС .

Пусть точка О - точка пересечения прямой а и плоскости α (рис. 2). Без ограничения общность, будем считать, что прямые p и q пересекаются в точке О . Нам нужно доказать перпендикулярность прямой а к произвольной прямой m из плоскости α.

Проведем через точку О прямую l , параллельно прямой m. На прямой а отложим отрезки ОА и ОВ , причем ОА = ОВ , то есть точка О - середина отрезка АВ . Проведем прямую PL , .

Прямая р перпендикулярна прямой а (из условия), (по построению). Значит, р АВ . Точка Р лежит на прямой р . Значит, РА = РВ .

Прямая q перпендикулярна прямой а (из условия), (по построению). Значит, q - серединный перпендикуляр к отрезку АВ . Точка Q лежит на прямой q . Значит, QА = .

Треугольники АР Q и ВР Q равны по трем сторонам (РА = РВ , QА = QВ, Р Q - общая сторона). Значит, углы АР Q и ВР Q равны.

Треугольники А PL и BPL равны по углу и двум прилежащим сторонам (∠АР L = ∠ВР L, РА = РВ , PL - общая сторона). Из равенства треугольников получаем, что AL = BL .

Рассмотрим треугольник ABL. Он равнобедренный, так как AL = BL. В равнобедренном треугольнике медиана является и высотой, то есть прямая перпендикулярна АВ .

Мы получили, что прямая а перпендикулярна прямой l, а значит, и прямой m, что и требовалось доказать.

Точки А, М, О лежат на прямой, перпендикулярной к плоскости α, а точки О, В, С и D лежат в плоскости α (рис. 3). Какие из следующих углов являются прямыми: ?

Решение

Рассмотрим угол . Прямая АО перпендикулярна плоскости α, а значит, прямая АО перпендикулярна любой прямой, лежащей в плоскости α, в том числе прямой ВО . Значит, .

Рассмотрим угол . Прямая АО перпендикулярна прямой ОС , значит, .

Рассмотрим угол . Прямая АО перпендикулярна прямой О D , значит, . Рассмотрим треугольник DAO . В треугольнике может быть только один прямой угол. Значит, угол DAM - не является прямым.

Рассмотрим угол . Прямая АО перпендикулярна прямой О D , значит, .

Рассмотрим угол . Это угол в прямоугольном треугольнике BMO , он не может быть прямым, так как угол МОВ - прямой.

Ответ : .

В треугольнике АВС дано: , АС = 6 см, ВС = 8 см, СМ - медиана (рис. 4). Через вершину С проведена прямая СК , перпендикулярная к плоскости треугольника АВС , причем СК = 12 см. Найдите КМ .

Решение :

Найдем длину АВ по теореме Пифагора: (см).

По свойству прямоугольного треугольника середина гипотенузы М равноудалена от вершин треугольника. То есть СМ = АМ = ВМ , (см).

Рассмотрим треугольник КСМ . Прямая КС перпендикулярна плоскости АВС , а значит, КС перпендикулярна СМ . Значит, треугольник КСМ - прямоугольный. Найдем гипотенузу КМ из теоремы Пифагора: (см).

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил.

Задания 1, 2, 5, 6 стр. 57

2. Дайте определение перпендикулярности прямой и плоскости.

3. Укажите в кубе пару - ребро и грань, которые являются перпендикулярными.

4. Точка К лежит вне плоскости равнобедренного треугольника АВС и равноудалена от точек В и С . М - середина основания ВС . Докажите, что прямая ВС перпендикулярна плоскости АКМ .


В этой статье мы поговорим о перпендикулярности прямой и плоскости. Сначала дано определение прямой, перпендикулярной к плоскости, приведена графическая иллюстрация и пример, показано обозначение перпендикулярных прямой и плоскости. После этого сформулирован признак перпендикулярности прямой и плоскости. Далее получены условия, позволяющие доказывать перпендикулярность прямой и плоскости, когда прямая и плоскость заданы некоторыми уравнениями в прямоугольной системе координат в трехмерном пространстве. В заключении показаны подробные решения характерных примеров и задач.

Навигация по странице.

Перпендикулярные прямая и плоскость – основные сведения.

Рекомендуем для начала повторить определение перпендикулярных прямых , так как определение прямой, перпендикулярной к плоскости, дается через перпендикулярность прямых.

Определение.

Говорят, что прямая перпендикулярна к плоскости , если она перпендикулярна любой прямой, лежащей в этой плоскости.

Также можно сказать, что плоскость перпендикулярна к прямой, или прямая и плоскость перпендикулярны.

Для обозначения перпендикулярности используют значок вида «». То есть, если прямая c перпендикулярна к плоскости , то можно кратко записать .

В качестве примера прямой, перпендикулярной к плоскости, можно привести прямую, по которой пересекаются две смежных стены комнаты. Эта прямая перпендикулярна к плоскости и к плоскости потолка. Канат в спортивном зале можно также рассматривать как отрезок прямой, перпендикулярной к плоскости пола.

В заключении этого пункта статьи отметим, что если прямая перпендикулярна к плоскости, то угол между прямой и плоскостью считается равным девяноста градусам.

Перпендикулярность прямой и плоскости - признак и условия перпендикулярности.

На практике часто возникает вопрос: «Перпендикулярны ли заданные прямая и плоскость»? Для ответа на него существует достаточное условие перпендикулярности прямой и плоскости , то есть, такое условие, выполнение которого гарантирует перпендикулярность прямой и плоскости. Это достаточное условие называют признаком перпендикулярности прямой и плоскости. Сформулируем его в виде теоремы.

Теорема.

Для перпендикулярности заданных прямой и плоскости достаточно, чтобы прямая была перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости.

Доказательство признака перпендикулярности прямой и плоскости Вы можете посмотреть в учебнике геометрии за 10 -11 классы.

При решении задач на установление перпендикулярности прямой и плоскости также часто применяется следующая теорема.

Теорема.

Если одна из двух параллельных прямых перпендикулярна к плоскости, то и вторая прямая перпендикулярна к плоскости.

В школе рассматривается много задач, для решения которых применяется признак перпендикулярности прямой и плоскости, а также последняя теорема. Здесь мы не будем на них останавливаться. В этом пункте статьи основное внимание сосредоточим на применении следующего необходимого и достаточного условия перпендикулярности прямой и плоскости.

Это условие можно переписать в следующем виде.

Пусть - направляющий вектор прямой a , а - нормальный вектор плоскости . Для перпендикулярности прямой a и плоскости необходимо и достаточно, чтобы выполнялось и : , где t – некоторое действительное число.

Доказательство этого необходимого и достаточного условия перпендикулярности прямой и плоскости основано на определениях направляющего вектора прямой и нормального вектора плоскости.

Очевидно, это условие удобно использовать для доказательства перпендикулярности прямой и плоскости, когда легко находятся координаты направляющего вектора прямой и координаты нормального вектора плоскости в зафиксированной в трехмерном пространстве. Это справедливо для случаев, когда заданы координаты точек, через которые проходят плоскость и прямая, а также для случаев, когда прямую определяют некоторые уравнения прямой в пространстве , а плоскость задана уравнением плоскости некоторого вида.

Рассмотрим решения нескольких примеров.

Пример.

Докажите перпендикулярность прямой и плоскости .

Решение.

Нам известно, что числа, стоящие в знаменателях канонических уравнений прямой в пространстве , являются соответствующими координатами направляющего вектора этой прямой. Таким образом, - направляющий вектор прямой .

Коэффициенты при переменных x , y и z в общем уравнении плоскости являются координатами нормального вектора этой плоскости, то есть, - нормальный вектор плоскости .

Проверим выполнение необходимого и достаточного условия перпендикулярности прямой и плоскости.

Так как , то векторы и связаны соотношением , то есть, они коллинеарны. Следовательно, прямая перпендикулярна плоскости .

Пример.

Перпендикулярны ли прямая и плоскость .

Решение.

Найдем направляющий вектор заданной прямой и нормальный вектор плоскости, чтобы проверить выполнений необходимого и достаточного условия перпендикулярности прямой и плоскости.

Направляющим вектором прямой является