Локализация функций в коре больших полушарий. Локализации функций в коре полушарий большого мозга Задания для самостоятельной работы

Значение различных участков коры полушарий

головного мозга.

2. Двигательные функции.

3. Функции кожной и проприорицептивной

чувствительности.

4. Слуховые функции.

5. Зрительные функции.

6. Морфологические основы локализации функций в

коре головного мозга.

Ядро двигательного анализатора

Ядро слухового анализатора

Ядро зрительного анализатора

Ядро вкусового анализатора

Ядро кожного анализатора

7. Биоэлектрическая активность головного мозга.

8. Литература.


ЗНАЧЕНИЕ РАЗЛИЧНЫХ УЧАСТКОВ КОРЫ БОЛЬШИХ

ПОЛУШАРИЙ ГОЛОВНОГО МОЗГА

С давних времен между учеными идет спор о местонахождении (локализации) участков коры головного мозга, связанных с различными функциями организма. Были высказаны самые разнообразные и взаимно противоположные точки зрения. Одни считали, что каждой функции нашего организма соответствует строго определенная точка в коре головного мозга, другие отрицали наличие каких бы то ни было центров; любую реакцию они приписывали всей коре, считая ее целиком однозначной в функциональном отношении. Метод условных рефлексов дал возможность И. П. Павлову выяснить ряд неясных вопросов и выработать современную точку зрения.

В коре головного мозга нет строго дробной локализации фун кций. Это следует из экспериментов над животными, когда после разрушения определенных участков коры, например двигательного анализатора, через несколько дней соседние участки берут на себя функцию разрушенного участка и движения животного восстанавливаются.

Эта способность корковых клеток замещать функцию выпавших участков связана с большой пластичностью коры головного мозга.

И. П. Павлов считал, что отдельные области коры имеют разное функциональное значение. Однако между этими областями не существует строго определенных границ. Клетки одной области переходят в соседние области.

Рисунок 1. Схема связи отделов коры с рецепторами.

1 – спинной или продолговатый мозг; 2 – промежуточный мозг; 3 – кора головного мозга


В центре этих областей находятся скопления наиболее специализированных клеток-так называемые ядра анализатора, а на периферии-менее специализированные клетки.

В регуляции функций организма принимают участие не строго очерченные какие-то пункты, а многие нервные элементы коры.

Анализ и синтез поступающих импульсов и формирование ответной реакции на них осуществляются значительно большими областями коры.

Рассмотрим некоторые области, имеющие преимущественно то или иное значение. Схематическое расположение местонахождения этих областей приведено на рисунке 1.


Двигательные функции. Корковый отдел двигательного анализатора расположен главным образом в передней центральной извилине, кпереди от центральной (роландовой) борозды. В этой области находятся нервные клетки, с деятельностью которых связаны все движения организма.

Отростки крупных нервных клеток, находящихся в глубоких слоях коры, спускаются в продолговатый мозг, где значительная часть их перекрещивается, т. е. переходит на противоположную сторону. После перехода они опускаются по спинному мозгу, где перекрещивается остальная часть. В передних рогах спинного мозга они вступают в контакт с находящимися здесь двигательными нервными клетками. Таким образом, возбуждение, возникшее в коре, доходит до двигательных нейронов передних рогов спинного мозга и затем уже по их волокнам поступает к мышцам. Ввиду того что в продолговатом, а частично и в спинном мозгу происходит переход (перекрест) двигательных путей на противоположную сторону, возбуждение, возникшее в левом полушарии головного мозга, поступает в правую половину тела, а в левую половину тела поступают импульсы из правого полушария. Вот почему кровоизлияние, ранение или какое-либо другое поражение одной из сторон больших полушарий влечет за собой нарушение двигательной деятельности мышц противоположной половины тела.

Рисунок 2. Схема отдельных областей коры больших полушарий головного мозга.

1 – двигательная область;

2 – область кожной

и проприорицептивной чувствительности;

3 – зрительная область;

4 – слуховая область;

5 – вкусовая область;

6 – обонятельная область


В передней центральной извилине центры, иннервирующие разные мышечные группы, расположены так, что в верхней части двигательной области находятся центры движений нижних конечностей, затем ниже-центр мышц туловища, еще ниже-центр передних конечностей и, наконец, ниже всех-центры мышц головы.

Центры разных мышечных групп представлены неодинаково и занимают неравномерные области.


Функции кожной и проприоцептивной чувствительности. Область кожной и проприоцептивной чувствительности у человека находится преимущественно позади центральной (роландовой) борозды в задней центральной извилине.

Локализация этой области у человека может быть установлена методом электрического раздражения коры головного мозга во время операций. Раздражение различных участков коры и одновременньш опрос больного об ощущениях, которые он при этом испытывает, дают возможность составить довольно четкое представление об указанной области. С этой же областью связано так называемое мышечное чувство. Импульсы, возникающие в проприорецепторах-рецепторах, находящихся в суставах, сухожилиях н мышцах, поступают преимущественно в этот отдел коры.

Правое полушарие воспринимает импульсы, идущие по центростремительным волокнам преимущественно с левой, а левое полушарие-преимущественно с правой половины тела. Этим объясняется то, что поражение, допустим, правого полушария вызовет нарушение чувствительности преимущественно левой стороны.

Слуховые функции. Слуховая область расположена в височной доле коры. При удалении височных долей нарушаются сложные звуковые восприятия, так как нарушается возможность анализа и синтеза звуковых восприятий.

Зрительные функции. Зрительная область находится в затылочной доле коры головного мозга. При удалении затылочных долей головного мозга у собаки наступает потеря зрения. Животное не видит, натыкается на предметы. Сохраняются только зрачковые рефлексы У человека нарушение зрительной области одного из полушарий вызывает выпадение половины зрения каждого глаза. Если поражение коснулось зрительной области левого полушария, то выпадают функции носовой части сетчатки одного глаза и височной части сетчатки другого глаза.

Такая особенность поражения зрения связана с тем, что зрительные нервы по пути к коре частично перекрещиваются.


Морфологические основы динамической локализации функций в коре полушарий большого мозга (центры мозговой коры).

Знание локализации функций в коре головного мозга имеет огромное теоретическое значение, так как дает представление о нервной регуляции всех процессов организма и приспособлении его к окружающей среде. Оно имеет и большое практическое значение для диагностики мест поражения в полушариях головного мозга.

Представление о локализации функций в коре головного мозга связано прежде всего с понятием о корковом центре. Еще в 1874 г. киевский анатом В. А, Бец выступил с утверждением, что каждый учасгок коры отличается по строению от других участков мозга. Этим было положено начало учению о разнокачественности коры головного мозга - цитоархитектонике (цитос - клетка, архитектонес - строю). В настоящее время удалось выявить более 50 различных участков коры - корковых цитоархитектонических полей, каждое из которых отличается от других по строению и расположению нервных элементов. Из этих полей, обозначаемых номерами, составлена специальная карта мозговой коры человека.

П
о И.П.Павлову, центр-это мозговой конец так называемого анализатора. Анализатор - это нервный механизм, функция которого состоит в том, чтобы разлагать известную сложность внешнего и внутреннего мира на отдельные элементы, т. е. производить анализ. Вместе с тем благодаря широким связям с другими анализаторами здесь происходит и синтезирование анализаторов друг с другом и с разными деятельностями организма.


Рисунок 3. Карта цитоархитектонических полей мозга человека (по данным института моэга АМН СССР) Вверху - верхнелатеральная поверхность,внизу- медиальная поверхносгь. Объяснение в тексте.


В настоящее время вся мозговая кора рассматривается как сплошная воспринимающая поверхность. Кора - это совокупность корковых концов анализаторов. С этой точки зрения мы и рассмотрим топографию корковых отделов анализаторов, т. е. главнейшие воспринимающие участки коры полушарий большого мозга.

Прежде всего рассмотрим корковые концы анализаторов, воспринимающих раздражения из внутренней среды организма.

1. Ядро двигательного анализатора, т. е. анализатора проприоцептивных (кинестетических) раздражении, исходящих от костей, суставов, скелетных мышц и их сухожилий, находится в предцентральной извилине (поля 4 и 6} и lobulus paracentralis. Здесь замыкаются двигательные условные рефлексы. Двигательные параличи, возникающие при поражении двигательной зоны, И. П. Павлов объясняет не повреждением двигательных эфферентных нейронов, а нарушением ядра двигательного анализатора, вследствие чего кора не воспринимает кинестетические раздражения и движения становятся невозможными. Клетки ядра двигательного анализатора заложены в средних слоях коры моторной зоны. В глубоких ее слоях (V, отчасти VI) лежат гигантские пирамидные клетки, представляющие собой эфферентные нейроны, которые И. П. Павлов рассматривает как вставочные нейроны, связывающие кору мозга с подкорковыми ядрами, ядрами черепных нервов и передними рогами спинного мозга, т. е. с двигательными нейронами. В предцентральной извилине тело человека, так же как и в задней, спроецировано вниз головой. При этом правая двигательная область связана с левой половиной тела и наоборот, ибо начинающиеся от нее пирамидные пути перекрещиваются частью в продолговатом, а частью в спинном мозге. Мышцы туловища, гортани, глотки находятся под влиянием обоих полушарий. Кроме предцентральной извилины, проприоцептивные импульсы (мышечно-суставная чувствительность) приходят и в кору постцентральной извилины.

2. Ядро двигательного анализатора, имеющего-отношение к сочетанному повороту головы и глаз в противоположную сторону, помещается в средней лобной извилине, в премоторной области (поле 8). Такой поворот происходит и при раздражении поля 17, расположенного в затылочной доле в соседстве с ядром зрительного анализатора. Так как при сокращении мышц глаза в кору мозга (двигательный анализатор, поле 8) всегда поступают не только импульсы от рецепторов этих мышц, но и импульсы от еет-чатки (зрительный анализатор, поле 77), то различные зрительные раздражения всегда сочетаются с различным положением глаз, устанавливаемым сокращением мышц глазного яблока.

3. Ядро двигательного анализатора, посредством которого происходит синтез целенаправленных сложных профессиональных, трудовых и спортивных движений, помещается в левой (у правшей) нижней теменной дольке, в gyrus supramarginalis (глубокие слои поля 40). Эти координированные движения, образованные по принципу временных связей и выработанные практикой индивидуальной жизни, осуществляются через связь gyrus supramarginalis с предцентральной извилиной. При поражении поля 40 сохраняется способность к движению вообще, но появляется неспособность совершать целенаправленные движения, действовать - апраксия (праксия - действие, практика).

4. Ядро анализатора положения и движения головы - статический анализатор (вестибулярный аппарат) в коре мозга точно еще не локализован. Есть основания предполагать, что вестибулярный аппарат проецируется в той же области коры, что и улитка, т. е. в височной доле. Так, при поражении полей 21 и 20, лежащих в области средней и нижней височных извилин, наблюдается атаксия, т. е расстройство равновесия, покачивание тела при стоянии. Этот анализатор, играющий решающую роль в прямохождении человека, имеет особенное значение для работы летчиков в условиях реактивной авиации, так как чувствительность вестибулярного аппарата на самолете значительно понижается.

5. Ядро анализатора импульсов, идущих от внутренностей и сосудов, находится в нижних отделах передней и задней центральных извилин. Центростремительные импульсы от внутренностей, сосудов, непроизвольной мускулатуры и желез кожи поступают в этот отдел коры, откуда отходят центробежные пути к подкорковым вегетативным центрам.

В премоторной области (поля 6 и 8) совершается объединение вегетативных функций.

Нервные импульсы из внешней среды организма поступают в корковые концы анализаторов внешнего мира.

1. Ядро слухового анализатора лежит в средней части верхней височной извилины, на поверхности, обращенной к островку, - поля 41, 42, 52, где проецирована улитка. Повреждение ведет к глухоте.

2. Ядро зрительного анализатора находится в затылочной доле - поля 18, 19. На внутренней поверхности затылочной доли, по краям sulcus Icarmus, в поле 77 заканчивается зрительный путь. Здесь спроецирована сетчатка глаза. При поражении ядра зрительного анализатора наступает слепотa. Выше поля 17 расположено поле 18, при поражении которого зрение сохраняется и только теряется зрительная память. Еще выше находится поле при поражении которого утрачивается ориентация в непривычной обстанвке.


3. Ядро вкусового анализатора, по одним данным, находится в нижней постцентральной извилине, близко к центрам мышц рта и языка, по другим - в ближайшем соседстве с корковым концом обонятельного анализатора, чем объясняется тесная связь обонятельных и вкусовых ощу-ний. Установлено, что расстройство вкуса наступает при поражении поля 43.

Анализаторы обоняния, вкуса и слуха каждого полушария связаны с рецепторами соответствующих органов обеих сторон тела.

4. Ядро кожного анализатора (осязательная, болевая и температурная чувствительность) находится в постцентральной извилине (поля 7, 2, 3) и в пе верхней теменной области (поля 5 и 7).


Частный вид кожной чувствительности - узнавание предметов на ощупь - стереогнозия (стереос - пространственный, гнозис - знание) связана с участком коры верхней теменной дольки (поле 7) перекрестно: левое полушарие соответствует правой руке, правое - левой руке. При поражении поверхностных слоев поля 7 утрачивается способность узнавать предметы на ощупь, при закрытых глазах.


Биоэлектрическая активность головного мозга.

Отведение биопотенциалов головного мозга - электроэнцефалография-дает представление об уровне физиологической активности головного мозга. Кроме метода электроэнцефалографии-записи биоэлектрических потенциалов, используется метод энцефалоскопии-регистрации колебаний яркости свечения множества точек мозга (от 50 до 200).

Электроэнцефалограмма является интегративным пространственно-временным показателем спонтанной электрической активности мозга. В ней различают амплитуду (размах) колебаний в микровольтах и частоту колебаний в герцах. В соответствии с этим в электроэнцефалограмме различают четыре типа волн: -, -, - и -ритмы. Для -ритма характерны частоты в диапазоне 8-15 Гц, при амплитуде колебаний 50-100 мкВ. Он регистрируется только у людей и высших обезьян в состоянии бодрствования, при закрытых глазах и при отсутствии внешних раздражителей. Зрительные раздражители тормозят -ритм.

У отдельных людей, обладающих живым зрительным воображением, -ритм может вообще отсутствовать.

Для деятельного мозга характерен (-ритм. Это электрические волны с амплитудой от 5 до 30 мкВ и частотой от 15 до 100 Гц Он хорошо регистрируется в лобных и центральных областях головного мозга. Во время сна появляется -ритм. Он же наблюдается при отрицательных эмоциях, болезненных состояниях. Частота потенциалов -ритма от 4 до 8 Гц, амплитуда от 100 до 150 мкВ Во время сна появляется и -ритм - медленные (с частотой 0,5-3,5 Гц), высокоамплитудные (до 300 мкВ) колебания электрической активности мозга.

Помимо рассмотренных видов электрической активности, у человека регистрируется Е-волна (волна ожидания раздражителя) и веретенообразные ритмы. Волна ожидания регистрируется при выполнении сознательных, ожидаемых действий. Она предшествует появлению ожидаемого раздражителя во всех случаях, даже при неоднократном его повторении. По-видимому, ее можно рассматривать как электроэнцефалографический коррелят акцептора действия, обеспечивающего предвидение результатов действия до его завершения. Субъективная готовность отвечать на действие стимула строго определенным образом достигается психологической установкой (Д. Н. Узнадзе). Веретенообразные ритмы непостоянной амплитуды, с частотой от 14 до 22 Гц, появляются во время сна. Различные формы жизне деятельности приводят к существенному изменению ритмов биоэлектрической активности мозга.

При умственной работе усиливается -ритм, -ритм при этом исчезает. При мышечной работе статического характера наблюдается десинхронизация электрической активности мозга. Появляются быстрые колебания с низкой амплитудой.Во время динамической работы пе-. риоды десинхронизированной и синхронизированной активности наблюдаются соответственно в моменты рабогы и отдыха.

Образование условного рефлекса сопровождается десинхронизацией волновой активности мозга.

Десинхронизация волн происходит при переходе от сна к бодрствованию. При этом веретенообразные ритмы сна сменяются

-ритмом, увеличивается электрическая активность ретикулярной формации. Синхронизация (одинаковые по фазе и направлению волны)

характерна для тормозного процесса. Она наиболее отчетливо выражена при выключении ретикулярной формации стволовой части мозга. Волны электроэнцефалограммы, по мнению большинства исследователей, являются результатом суммации тормозных и возбуждающих постсинаптических потенциалов. Электрическая активность мозга не является простым отражением обменных процессов в нервной ткани. Установлено, в частности, что в импульсной активности отдельных скоплений нервных клеток обнаруживаются признаки акустического и семантического кодов.

Кроме специфических ядер таламуса возникают и развиваются ассоциативные ядра, имеющие связи с неокортексом и определяющие развитие конечного мозга. Третьим источником афферентных воздействий на кору больших полушарий является гипоталамус, который играет роль высшего регуляторного центра вегетативных функций. У млекопитающих филогенетически более древние отделы переднего гипоталамуса связаны с...

Затрудняется формирование условных рефлексов, нарушаются процессы памяти, теряется избирательность реакций и отмечается неумеренное их усиление. Большой мозг состоит из почти идентичных половин – правого и левого полушарий, которые связаны мозолистым телом. Комиссуральные волокна связывают симметричные зоны коры. Тем не менее, кора правого и левого полушарий не симметричны не только внешне, но и...

Подход к оценке механизмов работы высших отделов головного мозга с использованием условных рефлексов был столь успешным, что позволил Павлову создать новый раздел физиологии - «Физиологию высшей нервной деятельности», науку о механизмах работы больших полушарий головного мозга. БЕЗУСЛОВНЫЕ И УСЛОВНЫЕ РЕФЛЕКСЫ Поведение животных и человека представляет собой сложную систему взаимосвязанных...

Кора больших полушарий - материальная основа психической деятельности человека. Кора - серое вещество толщиной от 1,5 до 5 мм, содержит 14 млрд нервных клеток и имеет шестислойное строение. Кора - огромный ядерный центр, ядро, распластанное по поверхности полушарий.

Более 130 лет идет спор - есть ли в коре центры или нет и в каком объеме они оказывают влияние на «курируемые» функции: 1. Отвечают ли эти центры буквально за все (центр туризма, любви к живописи, к театру и пр.), или их влияние менее детализировано. 2. Кора - это один сплошной экранный центр, отвечающий за все функции.

Очевидно, истина, как всегда, где-то посередине.

Основоположником детального изучения клеточного состава коры был русский ученый, киевлянин Владимир Алексеевич Бец. В 1874 г. он опубликовал результат исследований с помощью собственного метода серийных срезов и окраски кармином. Бец выявил различное строение коры в различных ее участках и разработал карту цитоархитектоники коры. В последующем были созданы и другие карты: Бродмана с 52 цитоархитектоническими полями, Фогта со 150 миелоархитектоническими полями и др. Исследования в настоящнее время продолжаются в Институте мозга в Москве и в других странах.

Представления о локализации функций в коре головного мозга имеют большое практическое значение для решения задач топики поражений в полушариях мозга. Повседневный клинический опыт показывает, что существуют определенные закономерности зависимости расстройств функций от расположения патологического очага. Исходя из этого, клиницист и решает задачи топической диагностики. Однако так дело обстоит с простыми функциями: движением и чувствительностью. Функции более сложные, филогенетически молодые, не могут быть узколокализованными; в осуществлении сложных функций участвуют весьма обширные области коры, даже вся кора.

Работы В.А. Беца были внимательно изучены И.П. Павловым. С учетом этих данных, Иваном Петровичем Павловым были созданы основы нового и прогрессивного учения о локализации функций в головном мозге. Павлов рассматривал кору полушарий большого мозга как совокупность корковых концов анализаторов. Павлов создал учение об анализаторах. По Павлову, анализатор - нервный механизм, анализирующий явления внешнего и внутреннего мира путем разложения сложного комплекса раздражений на отдельные элементы. Он начинается воспринимающим аппаратом и кончается в мозгу, то есть анализатор включает рецепторный аппарат, проводник нервных импульсов и корковый центр.

Павлов доказал, что корковый конец анализатора - это не строго очерченная зона. В нем есть ядро и рассеянные элементы. Ядро - место концентрации нервных клеток, где происходит высший анализ, синтез и интеграция. На его периферии, в рассеянных элементах, совершаются простые анализ и синтез. Площади рассеянных элементов соседних анализаторов перекрывают друг друга (рис.).

По Павлову - работа второй сигнальной системы неразрывно связана с функциями всех анализаторов, поэтому невозможно представить локализацию сложных функций второй сигнальной системы в ограниченных корковых полях. Павловым заложены основы учения о динамической локализации функций в коре. Представления о динамической локализации функций в коре предполагают возможность использования одних и тех же корковых структур в разнообразных сочетаниях для обслуживания различных сложных корковых функций. Так, ассоциативные пути объединяют анализаторы, способствуя высшей синтетической деятельности коры мозга. Сегодня ученые знают, что раздражение трансформируется в возбуждение, передающееся в корковый конец анализатора. Не ясно другое - где и как возбуждение трансформируется в ощущение? Какие структуры отвечают за это? Так, при раздражении зрительного поля в области шпорной борозды возникают «простые» галлюцинации в виде световых или цветовых пятен, искр, теней. Раздражение наружной поверхности затылочной доли дает «сложные» галлюцинации в виде фигур, движущихся предметов.

В двигательной зоне коры обнаружены клетки, дающие разряд импульсов на зрительные, слуховые, кожные раздражения, а в зрительной зоне коры выявлены нейроны, отвечающие электрическими разрядами на осязательные, звуковые, вестибулярные и обонятельные раздражители. Кроме того, были найдены нейроны, которые отвечают не только на «свой» раздражитель, как теперь говорят, раздражитель своей модальности, своего качества, но и на один-два чужих. Их назвали полисенсорными нейронами.

Данный раздел анатомии НС разделен на следующие подкатегории

1.1. Из истории учения о локализации ВПФ

Идея о том, что различные участки мозга имеют разную спе­циализацию, т е функционируют не одинаково, возникла давно, задолго до появления нейропсихологии как научной дисципли­ны. Прежде всего она связана с именем французского невролога Франца Галля (F. Gaal), который первым предположил, что од­нообразная на вид масса мозга состоит из многих органов. Г. Хэд, написавший труд, в котором прослежена история научной мыс­ли в течение века (от середины XIX до середины XX столетия), сообщает интересные сведения о том, как сложилось это мнение у Ф. Галля.

В детстве Ф. Галль рос и учился вместе с мальчиком, которо­му значительно легче давалось учение. Если требовалось выучить что-нибудь наизусть, этот мальчик и некоторые другие ученики школы значительно обгоняли его по многим предметам, но при этом отставали от него в письменных работах. Ф. Галль заметил, что у этих учеников с хорошей памятью на устные тексты боль­шие «бычьи глаза» и шишки над надбровными дугами. На этом основании он связал способность легко заучивать наизусть с хо­рошей памятью на слова и пришел к выводу, что эта способность располагается в той части мозга, которая находится позади ор­бит. Так возникла мысль о том, что память на слова располагает­ся в лобных долях мозга. Всю жизнь он обращал внимание на строение черепа у разных людей и связывал с его особенностями те или иные имеющиеся у них способности. На базе этих взгля­дов возникла целая область знания - френология (от греч. - «душа»), содержащее указания на то, как по форме че­репа определить характер и способности человека. Ф. Галля ста­ли называть основателем френологии, считавшейся, да и про­должающей считаться, сомнительным направлением научных исследований. Взгляды Ф. Галля были расценены столь опасны­ми для религии и морали, что его лекции были запрещены соб­ственным письмом кайзера. Однако френологические представ­ления Ф. Галля, как бы их ни оценивали, сыграли большую роль. Они положили начало идее о наличии в мозге человека специали­зированных отделов, каждый из которых выполняет свою специ­фическую функцию. Это не позволяло более считать мозг еди­ной однородной массой

К 60-м годам XIX века обстановка в неврологической науке была накалена до предела. Вопросы о локализации функции в головном мозге поднимались в научных дебатах по любому по­воду. Несмотря на работы Ф. Галля и его последователей, глав­ным вопросом оставался вопрос о том, функционирует ли мозг как одно целое или он состоит из многих органов и центров, дей­ствующих более или менее независимо друг от друга. Наиболее остро стояла проблема локализации речи. Распространенным было мнение, согласно которому за речь ответственны передние отделы мозга.

Ф. Галль считал, что определенную мозговую локализацию имеют также другие ВПФ Так, он различал память вещей, мест, названий, грамматических категорий и располагал их в разных областях мозга. Как будет показано далее, эти взгляды являлись прогрессивными и во многом подтвердились впоследствии Мнение Ф. Галля о том, что более высокие по иерархии способ­ности имеют такую же очерченную локализацию в каком-либо из участков мозга, оказалось несостоятельным. Выяснилось, что такие психологические качества, как «смелость», «общительность», «любовь к родителям», «честолюбие», «инстинкт продол­жения рода» и др., не располагаются в «отдельных органах» моз­га, как утверждал Ф. Галль.

Тем не менее идея локализационизма получила мощное раз­витие. В августе 1861 года французский невролог Поль Брока на заседании Антропологического общества Парижа доложил свой знаменитый случай, доказавший то, что повреждение отдельной мозговой зоны, т.е. локальный очаг поражения, может разру­шить такую функцию, как речь, вызвав ее потерю, называемую афазией. На вскрытии черепа у пациента П. Брока по фамилии Лебран (Lebran), которого он наблюдал 17 лет, было обнаружено разрушение большого участка левого полушария мозга, охваты­вающего в основном речедвигательную зону. На основании того, что наиболее пострадавшими оказались речевые движения, эту область стали считать центром моторной речи, и афазию, возни­кающую вследствие его поражения, моторной афазией.

Через 10 лет после доклада П. Брока на заседании того же Общества немецкий невролог Карл Вернике (К. Wernice) пред­ставил другой случай локального поражения мозга, и тоже у больного с афазией. Пациент К. Вернике, хоть и сбивчиво, мог говорить сам, но практически не понимал речь других людей. Очаг поражения охватывал у данного больного большую часть височной доли левого полушария. Этой форме афазии К. Вернике дал название сенсорной, а пораженной области мозга - центра сенсорной речи, и афазию, возникающую вследствие его пора­жения, обозначил как сенсорную. Так учение о локализации ВПФ было в значительной мере продвинуто вперед.

Вскоре к центрам моторной и сенсорной речи были добавле­ны и другие. Интерес к вопросу о локальных поражениях мозга возрос во многих странах. Локализационистские идеи Ф. Галля получили еще более мощное звучание, и в науке началось увле­чение центрами, которое привело, по меткому выражению Г. Хэда, к строительству схем и диаграмм. Мозг стал расчерченным на множество областей, отражавших представления того времени о пестрой функциональной специализации зон мозга. Появилась знаменитая лоскутная карта мозга, где к чертам характера, лока­лизуемым Ф. Галлем, были присоединены еще многие, в том числе и приобретенные, пристрастия, например, к той или иной еде, к той или другой музыке и т.п. Таким образом, идея локали­зации функции была доведена до абсурда (рис. 9 см. цв. вкл.). Ес­тественно, что возникли серьезные возражения современников, считавших, что мозг не может функционировать столь «дробно» Этих ученых, составивших оппозицию узким локализационистам, назвали антилокализационистами. Наиболее ярким пред­ставителем этого течения был французский ученый Пьер Мари (P. Man). Он считал, что функциональная специализация мозга не может быть столь узкой и что собственно речевой областью является лишь левая височная доля.

Некоторые ученые занимали промежуточную позицию. Их ярким представителем был X. Джексон. По его мнению, каждая сложно организованная функция представлена в мозге на трех уровнях: 1) низшем (стволовом или спинальном); 2) среднем (в двигательных или сенсорных отделах коры мозга); 3) высшем (лобные доли мозга). Эти представления актуальны и в настоящее время, правда, с некоторыми уточнениями, о которых пой­дет речь далее. X. Джексону принадлежит знаменитое высказы­вание, что локализовать функцию и локализовать поражение - не одно и то же. Это означает, что в результате поражения мозга в одном месте может возникнуть неполноценность функциониро­вания в другом, а это уже не совпадало с представлениями узкого локализационизма.

1.2. Современные представления о локализации ВПФ (идея динамической локализации ВПФ)

Накопленный опыт в области последствий локальных пора­жений мозга послужил основой для возникновения теории сис­темного строения речевой функции и ее динамической локали­зации в мозге, которая положила конец тянувшейся более века дискуссии локализационистов и антилокализационистов. Эта теория была создана трудами отечественных неврологов и нейрофизиологов Н.А. Бернштейна, П.И. Анохина, А.И. Ухтомско­го, психолога Л.С. Выготского, основателя нейропсихологии А.Р. Лурии и др.

Термин «динамическая» по отношению к локализации обус­ловлен тем, что, соответственно представлениям названных уче­ных, одна и та же зона мозга может включаться в самые разные ансамбли мозговых областей, т.е. динамично менять свое поло­жение и роль. При осуществлении одной функции она функци­онирует совместно с одними зонами, а при осуществлении дру­гой - с другими, как цветные стеклышки в детской игрушке ка­лейдоскоп: стеклышки те же самые, а изображение разное - в зависимости от изменений их сочетания. В каждом конкретном ансамбле мозговых зон, участвующих в реализации функции, роль каждой из них специфична (рис. I ).

Такая способность нервных структур - быть по-разному за­действованными в разных функциях - является ярким вопло­щением биологического принципа экономии, которая позволяет сделать наиболее оптимальным способом реализации тот или иной вид психической деятельности.

Несмотря на такую сложность мозговой организации ВПФ, к настоящему времени гораздо больше известно о том, какую Функциональную специализацию имеют разные области мозга, что отражено на специальных картах мозга.

Указанные в них зоны являются результатом исследований не только в рамках нейропсихологии, но и гораздо более давних научных изысканий.

Выдающийся отечественный нейрофизиолог П.К. Анохин определяет каждую функциональную систему как определенный комплекс, совокупность афферентных сигнализаций, «который через акцепторы действия направляет выполнение ее функции».

^ ДИНАМИЧЕСКАЯ ЛОКАЛИЗАЦИЯ ВЫСШИХ ПСИХИЧЕСКИХ ФУНКЦИЙ

Рис. I

Условные обозначения: D - правое полушарие, S - левое полушарие, F - лобная доля, О - затылочная доля, Т - височная доля.

П.К. Анохин выявил важнейшую закономерность высшей нерв­ной деятельности, а именно то, что внешние афферентные раздра­жители, поступающие в ЦНС, распространяются в ней не линейно, как принято было считать ранее, а вступают в тонкие взаимодейст­ вия с другими афферентными возбуждениями. Эти «объединения» мо­гут пополняться новыми связями, обогащаясь ими. Деятельность в целом видоизменяется. Именно объединение афферентаций явля­ется непременным условием принятия решения.

Таким образом, афферентному синтезу как механизму выс­шей психической деятельности П.К. Анохин придавал первосте­пенное значение. Наконец, нельзя не остановиться на том, что он ввел в науку понятие «обратной афферентаций», т.е. механизм который информирует о результатах выполненного действия, чтобы организм оценил их. В настоящее время эта идея раз­вилась в целое научно-практическое направление медицины, называемое БОСом (биологической обратной связью).

Огромный вклад в понимание локализации ВПФ внесло уче­ние А.Р. Лурии о мозговой организации ВПФ, явившееся резуль­татом научно-практической работы с колоссальным числом че­репных ранений у практически здоровых молодых людей, кото­рых «поставила» Вторая мировая война. Эта трагедия позволила увидеть, в каком именно месте поврежден мозг, и фиксировать, какая именно функция при этом «выпадает». Подтвердились единичные находки классиков неврологии (П. Брока, К. Вернике и др.) о том, что существуют локальные ВПФ или их фрагмен­ты, т.е. те, которые могут осуществляться не за счет всего мозга, а какой-либо определенной его области. Полученные результаты вывели нашу страну в данной области на передовые рубежи в ми­ре, позволив создать, как уже упоминалось, новую научную дис­циплину - нейропсихологию.

Л.С. Выготский подчеркивал, что проблема мозговой орга­низации ВПФ не сводится лишь к тому, чтобы определить те зо­ны, которые их реализуют. Каждая ВПФ является, по существу, центром двух функций: 1) специфической, связанной с припи­санным ей видом психической деятельности; 2) неспецифиче­ской, делающей эту область способной участвовать в любом виде деятельности. Специфическая функция никогда не осуществля­ется каким-либо одним участком мозга, а является результатом его интеграции с другими областями мозга. Таким образом, лю­бая функция соотносится с деятельностью мозга, как фигура с фоном. При этом Л.С. Выготский подчеркивал, что интегративная сущность функций отнюдь не противоречит их дифференцированности. Напротив, считал он, дифференциация и интегра­ция не только не исключают друг друга, но, скорее, предполага­ют одна другую и в известном отношении идут параллельно.

Другими важнейшими особенностями представлений о лока­лизации ВПФ Л.С. Выготский считал: 1) изменчивость меж­функциональных связей и отношений; 2) наличие сложных динамических систем, в которых интегрирован ряд элементарных функций; 3) обобщенное отражение действительности в созна­нии. Он полагал, что все эти три условия отражают универсаль­ный закон философии, который гласит, что диалектическим скачком является не только переход от неодушевленной материи к одушевленной, но и от ощущения к мышлению степень авто­матизированности способа выполнения действия Л.С. Выгот­ский считал обусловленной тем иерархическим уровнем, на ко­тором осуществляется функция.

Наконец, принципиально важным следует считать убеждение Л.С. Выготского в том, что «развитие идет снизу вверх, а распад - сверху вниз». Эта крылатая фраза Л.С. Выготского достигает та­кого уровня обобщения, когда мысль становится практически не­оспоримой. Развиваясь, ребенок постигает мир от простого к сложному. В случае же потери (распада) функции человек возвра­щается к более элементарным знаниям, умениям и навыкам, ко­торые служат базисными для процессов компенсации.

Из представлений Л.С. Выготского о закономерностях раз­вития и распада непосредственно вытекает и следующее поло­жение: одинаково локализованные поражения приводят у ре­бенка и взрослого к совершенно разным последствиям. При расстройствах развития, связанных с каким-либо поражением мозга, страдает в первую очередь ближайший высший по отно­шению к пораженному участок, а у взрослого, т.е. при распаде функции, - напротив, ближайший низший, а ближайший выс­ший страдает относительно меньше.

Понятие локальных ВПФ в значительной мере развито Н.П. Бехтеревой, которая разработала понятия гибких и жестких звеньев мозговых систем. К жестким звеньям Н.П. Бехтерева от­несла большую часть областей регуляции жизненно важных внутренних органов (сердечно-сосудистой, дыхательной и др. систем), ко вторым - области анализа сигналов внешнего (и от­части внутреннего) мира, зависящих от условий, в которых чело­век находится. Н.П. Бехтеревой было выявлено, что изменение условий приводит к существенным изменениям в работе мозго­вых структур, обеспечивающих ту или иную функцию, а главное, в том, какие именно зоны мозга выключаются или включаются в деятельность. Эти данные показали, что локализация ВПФ может меняться не только от возрастных показателей, когда одни звенья как бы отмирают, а другие подключаются, или же от ин­дивидуальных особенностей мозговой организации психической деятельности, но и от условий, в которых деятельность протека­ет. Отсюда, помимо этого, вытекают далеко простирающиеся выводы о соблюдении необходимых условий воспитания, обуче­ния и вообще жизни человека, а также о подборе оптимальных условий для протекания этих процессов.

Французские ученые Ж. де Ажуриагерра и X. Экаэн обращают внимание на то, что ценность клинического понятия локализации чрезвычайно велика, но только в том случае, если учитывать, что разные функции локализованы по-разному. Анатомические, фи­зиологические и клинические данные позволяют установить, что локализация некоторых функций носит характер соматотопии (совпадают с проекцией в мозге неполноценно функционирующей части тела). К ним относятся области анализаторов, а также различные виды гнозиса, праксиса, в том числе и орально-артику­ляционного. Некоторые же виды таких функций (например, схема тела) значительно варьируют по структуре и локализации в зави­симости от расположения очага поражения внутри зоны их реали­зации или же в зависимости от индивидуальной организации моз­говой деятельности у разных больных. Об этом свидетельствуют различия в структуре дефекта при их поражениях.

По мнению Ж. де Ажуриагерра и X. Экаэна, принципиально важно положение X. Джексона о положительных и отрицатель­ных симптомах нарушения ВПФ. Под отрицательными понима­ется выпадение функции, а под положительными - освобожде­ние нижележащих зон, которые до поломки находились под контролем более высоких. К этому Ж. де Ажуриагерра и X. Экаэн добавляют, что высвобождение нижележащих областей мозга и соответствующих функций связано с нарушением равновесия между типом реагирования на внешние стимулы нижними и верхними зонами мозга.

Говоря о проблеме локализации, нельзя не учитывать и тот факт, согласно которому различные по этиологии поражения моз­га (сосудистые, опухолевые или травматические) обусловливают различия в симптомокомплексе развивающихся расстройств.

^ Вопросы по теме «Учение о локализации»:


  1. Какую идею о мозговом представительстве ВПФ внесли ра­боты классиков неврологии (P. Broca, K.Wermce и др.)?

  2. Что означают термины «локализационизм» и «антилокализационизм»?

  3. Что означает термин «динамическая локализация ВПФ»?

  4. Каковы основные положения Л.С. Выготского о локализа­ции ВПФ, их структуре, развитии и распаде?

  5. На каком материале было создано учение А. Р. Лурии?

Глава 2. Строение головного мозга

2.1. Общие представления о головном мозг

Для того чтобы рассмотреть современные представления не только о психологической структуре ВПФ человека, но и их моз­говой организации, целесообразно обратиться к современным представлениям о головном мозге в целом.

Головной мозг человека - это верхний отдел центральной нервной системы (ЦНС). Между ним и нижним отделом ЦНС (спинным мозгом) не существует границы, которая была бы выражена анатомически. Окончанием спинного мозга и началом головного условно служит верхний шейный позвонок. Отсюда понятно, какую важную роль для работы всей нервной системы имеет состояние каждой из частей ЦНС. В частности, тот факт, что ее «нервная ось» (головной и спинной мозг) едина, обуслов­ливает зависимость работы головного мозга от состояния спин­ного, особенно в детском возрасте. Это, в свою очередь, свиде­тельствует о том, что воспитательные меры по укреплению по­звоночного столба в самый ранний период жизни, а также по выработке правильной осанки в последующее время являются необходимыми.

Различные части мозга не одинаковы по иерархии. В нейро­психологии принято их анатомическое деление на блоки, учение b которых разработано А.Р. Лурией. Каждый из них составлен различными мозговыми структурами, о которых речь пойдет Далее.

Основную часть, самую большую по занимаемой площади, Составляет кора мозга (рис. 1, 2, цв. вкл.). Она имеет: а) поверх­ностные складки, которые обозначаются как борозды; б) глубо­кие складки, обозначаемые как щели; в) выпуклые гребни на по­верхности мозга - извилины.

Щели разделяют мозг на доли (рис. 2, цв. вкл.). Извилины де­лят доли на еще более дифференцированные в функциональном отношении участки.

Основными единицами нервной системы являются нервные клетки - нейроны (рис. 9 см. цв. вкл.). Как и другие клетки наше­го организма, нейрон содержит тело с расположенным в центре ядром и отростки, которые называются невритами. Одни из не­вритов передают нервные импульсы другим клеткам, другие - принимают их. Передающие отростки - длинные. Это аксоны Принимающие - короткие. Этодендриты. Каждая клетка имеет один аксон и много дендритов.

Нейронами составлено серое вещество мозга. Они чрезвы­чайно разнообразны по форме и функциональному назначению. Их отростки, аксоны, передающие информацию - это белое вещество мозга. Аксоны миелинизированы, т.е. покрыты жировым миелином, который повышает скорость передачи нервных им­пульсов. Аксоны надежно защищены глиальными клетками митохондриями, представляющими собой опорные клетки, обра­зующие белую жировую (миелиновую) прослойку - глию. Глия не является сплошной. На ней есть перехваты, называемые пе­рехватами Ранвье. Они облегчают прохождение нервных им­пульсов от клетки к клетке. Эту же роль играют пузырьки (нейромидиаторы), расположенные в окончаниях аксонов. Глиальные клетки не проводят нервные импульсы. Одни из них питают нейроны, другие защищают от микроорганизмов, третьи регули­руют поток спинномозговой жидкости.

В теле клетки имеются и другие структуры, обеспечивающие жизнедеятельность. Наиболее важными из них являются ри­босомы (тельца Ниссля). Рибосомы имеют форму гранул. Они синтезируют белки, без которых клетка не может выжить.

Несмотря на сложность клеточного устройства мозга, законы его функционирования во многом изучены и представляют чрез­вычайный интерес.

Испанский ученый Сантьяго Рамон-и-Кахал дал удивитель­но поэтичное описание мозга с точки зрения составляющих его нервных клеток. «Сад неврологии, - писал он, - представляет исследователю захватывающий, ни с чем не сравнимый спек­такль. В нем все мои эстетические чувства находили полное удовлетворение. Как энтомолог, преследующий ярко окрашен­ных бабочек, я охотился в красочном саду серого вещества с их тонкими, элегантными формами, таинственными бабочками ду­ши, биение крыльев которых, быть может, когда-то - кто знает? - прояснит тайну духовной жизни».

Мозг новорожденного ребенка насчитывает 12 миллиардов нейронов и 50 миллиардов глиальных клеток, взрослого челове­ка - 150 миллиардов нейронов (по И.А. Скворцову). Если их вытянуть в цепочку, вернее, в мост, то по нему можно пропуте­шествовать на Луну и обратно.

Размер каждой клетки чрезвычайно мал, но диапазон их раз­личий по этому признаку достаточно велик: от 5 до 150 микрон. В течение жизни человек теряет определенное число клеток, но в сравнении с общим их числом потери ничтожны (приблизи­тельно 4 миллиарда нейронов). Если совсем недавно считалось, что нервные клетки не вос­станавливаются, то в настоящее время эта истина перестала быть абсолютной. Нейробиолог С. Вайс из Канады в 1998 году выска­зал мнение, основанное на проведенных им исследованиях, что нейроны могут восстанавливаться. Правда, механизм такого вос­становления имеет место не у всех людей и не при всех условиях. Причины этого продолжают выясняться, но сам факт того, что это возможно, относится к числу на редкость сенсационных.

До того, как были открыты тайны созревания и функциони­рования нервных клеток, считалось, что нервы - это пустые (полые) трубки. По ним движутся потоки газов или жидкостей. Исаак Ньютон впервые отошел от этих представлений, заявив, что передачу нервного импульса осуществляет вибрирующая эфирная среда. Однако еще ближе к истинному положению вещей подошел итальянский исследователь Луиджи Гальвани. В научном мире, а также вне его, хорошо известен казус, ко­торый помог ему открыть биоэлектрическую природу функци­онирования нервной системы.

Имеется в виду оторвавшаяся лапка только что подвергшейся препарированию лягушки, которая случайно попала под дейст­вие электрического тока и стала сокращаться (дергаться). Так были заложены основы важнейшей на сегодняшний день науки о мозге - нейрофизиологии, изучающей электрические биопо­тенциалы мозга.

Широко известно, что нервные клетки объединяются в сети, которые называют также нервными цепями. У каждого нейрона приблизительно 7 тыс. таких цепей. По цепям от клетки к клет­ке передается информация. Местом обмена являются места со­единения аксона (длинного отростка клетки) одной клетки и дендрита (короткого отростка) другой клетки. Нейрон передает возбуждение другому нейрону через одну или множество точек контакта (синапсы) - (рис. 10, цв. вкл.). Когда импульс доходит до синаптического узла, выделяется особое химическое вещество - нейромедиатор. Оно заполняет синаптическую щель и распространяет нервный импульс на значительное рас­стояние. Чем больше синапсов, тем вместительнее в смысле па­мяти мозговой «компьютер». Каждая нервная клетка получает импульсы от многих сотен, и даже тысяч нейронов.

Согласно представлениям нейрофизиологии, скорость тече­ния электрического тока по проводам нервов равна скорости винтового самолета - 60-100 м/с. Обычно расстояние от синап­са до синапса составляет 1,5-2 м. Нервный импульс преодолева­ет его за 1/100 долю секунды. Сознание не успевает зафиксировать это время. Скорость мысли, таким образом, выше скорости све­та. Это находит отражение во многих фольклорных источниках. Вспомним, например, принцессу, которая, испытывая доброго молодца, загадывает ему загадки, и в частности, эту: «Что на све­те быстрее всего?» (имея в виду в качестве ответа - мысль).

Нервные клетки не делятся, как это делают другие клетки ор­ганизма, поэтому при повреждении они чаще всего погибают.

Несмотря на то, что нервный импульс имеет электрическую природу, связь между нейронами обеспечивается химическими процессами. Для этого в мозге имеются биохимические субстан­ции - нейротрансмиттеры и нейромодуляторы. В тот момент, когда электрический сигнал доходит до синапса, высвобождают­ся соответствующие трансмиттеры. Они, как транспортное сред­ство, доставляют сигнал к другому нейрону. Затем эти нейро­трансмиттеры распадаются. Однако на этом процесс передачи нервных импульсов не заканчивается, т.к. нервные клетки, находятся за синапсом, активизируются, и возникает постсинапсический потенциал. Он рождает импульс, движущийся к другому синапсу, и описанный выше процесс повторяется тысячи итысячи раз. Это позволяет воспринимать и обрабатывать колос­сальный объем информации.

Во многих публикациях по неврологии и нейрофизиологии отмечается, что сложнейшая мозговая деятельность обеспечива­ется, в сущности, простыми средствами. Некоторые из авторов отмечают, что эта простота отражает универсальный закон «до­стижения большой сложности через многократные преобразо­вания простых элементов» (Э. Голдберг). Аналогично этому, множество слов в языке складывается из ограниченного числа звуков речи и букв алфавита, бесчисленные музыкальные мело­дии - из малого числа нот, генетические коды миллионов людей обеспечиваются конечным числом генов и т.д.

2.2. Анатомическая и функциональная дифференциация мозга

2.2.1. Поля коры мозга

Согласно сложившимся представлениям, кора мозга имеет шесть основных слоев, каждый из которых состоит из различных по форме и размеру нервных клеток. Этот анатомический факт имеет, однако, не столь важное значение для понимания нейропсихологических феноменов, как функциональная дифферен­циация коры на три основных вида полей - первичные, вторич­ ные и третичные (рис. 8, цв. вкл.). Они различаются между собой по иерархии. Наиболее элементарными являются первичные, более сложными по строению и функционированию - вторич­ные, и, наконец, наиболее сложными по этим признакам явля­ются третичные поля.

Поля каждого из уровней имеют свою нумерацию, которая указывается на цитоархитектонических картах мозга. Наиболее распространенной из них является карта Бродмана (рис. 6, цв. вкл.).

Первичные поля - это «корковые концы анализаторов» и, как уже сообщалось выше, они функционируют от природы, врож­денно. Их локализация зависит от того, к какому анализатору они относятся.

Первичные поля, находящиеся в лобной доле (до центральной извилины), а именно поля 10, 11, 47, настроены на подготовку и исполнение двигательных актов, относящихся к физическому Уровню.

Первичные поля слухового анализатора располагаются пре­имущественно на внутренней поверхности височных долей мозга (поля 41, 42), кинестетического (чувствительного в целом) вблизи от центральной (Ролландовой) борозды, в теменной доле (поля 3, 1 и 2).

Первичные чувствительные (тактильные) поля характеризу­ются тем, что они являются проекционными зонами в отноше­нии определенных частей тела: верхние отделы принимают чувствительные сигналы (ощущения) от нижних конечностей (ног), средние обрабатывают ощущения от верхних конечностей, а нижние - от лица, включая отделы речевого аппарата (язык, гу­бы, гортань, диафрагму). Кроме того, нижние отделы теменной проекционной зоны принимают ощущения от некоторых внут­ренних органов. Алгоритм проекций тела в переднем блоке мозга тот же, что и в заднем. Они также являются проекционными, но уже в отношении не чувствительных (кинестетических), а двига­тельных функций. Главное отличие проекционных зон от других состоит в том, что размеры той или другой части тела определя­ются не анатомической, а функциональной значимостью.

Первичные клетки мозга в самом раннем онтогенезе функци­онируют изолированно друг от друга, подобно отдельным мирам в Космосе. Так, ребенок узнает голос матери, но не узнает ее ли­ца, если она молчит. Особенно часто разобщение слуховых и зрительных впечатлений на уровне ощущений наблюдается в от­ношении лица отца, которое младенцы видят реже, чем лицо ма­тери. В литературе описаны случаи, когда ребенок, увидев скло­ненное над ним лицо отца, начинает громко испуганно плакать, пока он не заговорит. Постепенно между первичными полями коры мозга прокладываются информационные связи (ассоци­ации). Благодаря им накапливается опыт ощущений, т.е. появля­ются элементарные знания о действительности. Например, ре­бенок «узнает», что сосание груди или бутылочки утоляет чувст­во голода.

2.2.2. Модально-специфическая кора мозга

Первичные поля однородны по клеточному составу, поэтому они обозначаются как модально-специфические. Обонятельные поля содержат только обонятельные нервные клетки, слуховые - только слуховые и т.п. Несмотря на универсальность физиологи­ческих и биохимических механизмов, обеспечивающих работу мозга, его различные отделы функционируют по-разному, т.е. имеют различную функциональную специализацию, представляя разные модальности.

Вторичные поля тоже модально-специфичны, хотя и менее однородны, чем первичные. В состав клеток преобладающей мо­дальности вкраплены клетки других модальностей. Третичные будучи зонами перекрытия, содержат не только клетки полых модальностей, но и их целые зоны. Исходя из этого, их обозначают как полимодальные или надмодальностные. Благодаря функционированию реализуются наиболее сложные ВПФ, и в частности, определенные речевые компоненты. Модально специфические структуры мозга вносят в них свой собственный и что особенно важно, суммарный вклад.

Вторичные и третичные поля коры, в отличие от первичных, имеют особенности функционирования в зависимости от лате пализации, т.е. расположения в том или другом полушарии мозга. Например, височные доли разных полушарий, относясь к одной и той же, а именно, слуховой модальности, выполняют разную «работу». Височная доля правого полушария ответственна за об­работку неречевых шумов (издаваемых природой, включая «го­лоса животных» и голоса людей, предметами, включая музы­кальные инструменты и саму музыку, которую можно считать высшим видом неречевого шума). Височная же доля левого по­лушария осуществляет обработку речевых сигналов. Помимо различий в специализации височных долей мозга, относящихся к разным полушариям, здесь можно усмотреть и столь характер­ный для природы принцип «защиты» наиболее важных функ­ций, и тем более такой важной и необходимой любому человеку, как речь.

Различия в функциональной специфике первичных, вторич­ных и третичных полей обусловливают и различия в их способ­ности заменять друг друга (компенсировать) в случае патологии. Разрушение первичных полей не восполнимо, т.е. утерянные физический слух, зрение, обоняние и прочее не восстанавлива­ются. В самое последнее время это положение подвергается пе­ресмотру в связи с изучением регенерирующей роли так назы­ваемых стволовых клеток. Функции поврежденных вторичных полей подлежат компенсации, осуществляемой за счет подклю­чения других, «здоровых» систем мозга и перестройки способа их деятельности. Функции пострадавших третичных полей ком­пенсируются относительно легко за счет полимодальности, по­зволяющей опираться на мощную систему ассоциаций, храня­щихся в каждом из них и между ними. Необходимо, однако, помнить, что и в этом случае важное значение имеют возрастные пороги и время, когда начаты восстановительные мероприятия. Наиболее благоприятен ранний возраст и своевременное начало лечебных коррекционно-восстановительных мер.

Функционально все три вида полей коры соотносятся между собой вертикально: функции первичных, над ними надстраива­ются функции вторичных, а над вторичными - третичных. Однако анатомически они не располагаются подобным образом, т.е. друг над другом. Первичные поля составляют ядро той или иной анализаторной зоны, которая носит в нейропсихологии на­звание модальности. Вторичные поля находятся дальше от ядра, т.е. сдвинуты к периферии зоны, а третичные - еще далее. Про­порциональны близости к ядру и размеры разных по иерархии полей: первичные занимают наименьшую площадь, вторичные - большую, а третичные - самые большие по размеру. Вследствие этого последние накладываются друг на друга, образуя так назы­ваемые зоны «перекрытия». К ним относится, например, самая важная для ВПФ зона ТРО - височно-теменно-затылочная (temporahs - висок; panetahs - темя; oxipitahs - затылок).

В осуществлении высших психических функций наибольшее участие принимает слуховая, зрительная и тактильная кора.

Слуховая зона относится к сенсорной (воспринимающей) коре мозга. Основным ее отделом является, как указывает А.Р. Лурия, височная область левого полушария. В нее входят раз­ные по иерархии участки, что обусловливает сложность ее струк­турной и функциональной организации. Наиболее значимой из них является ядерная зона слухового анализатора, обеспечиваю­щая физический слух (поля 41, 42), - первичные поля слуховой коры. Далее от ядра располагается периферический отдел зоны (третичное поле 22). За ними следует область среднего виска, пог­раничная с теменной и затылочной областями (третичным по­лем 21 и частично с третичным полем 37). Средневисочные (внеядерные) отделы височной доли представлены третичной корой и являются более сложно организованными. Они, по представле­ниям нейропсихологии, ответственны за восприятие не единич­ных звуков речи и слов, а их серий, и тесно связаны многочис­ленными ассоциативными волокнами и со зрительной корой, что обусловливает ее участие в реализации слова. В зоне 37-го поля имеется также небольшая область перекрытия (наложение друг на друга височной и затылочной коры).

По данным Е.П. Кок, представленным в ее монографии «Зрительные агнозии», написанной еще в 1967 году, эта область наиболее приспособлена для овладения и дальнейшего владения словом. Е П. Кок подчеркивает, что слово - это единство зри­тельного образа предмета и его «звуковой оболочки», и, следова­тельно, наличие в одной зоне мозга слуховой и зрительной коры способствует выработке прочных образно-вербальных ассоци­аций.

Слово и его зрительный образ становятся прочно спаянны.

Чем прочнее эта «спайка», тем надежнее слово хранится в памяти и, напротив, чем она слабее, тем легче слово забывается (амнезия слова).

А.Р. Лурия пишет, что слуховое восприятие включает анализ синтез доходящих до субъекта сигналов уже на первых этапах их поступления.

Из этого следует, что процесс восприятия речи базируется не только на физическом слухе, но и на способности к анализу ус­лышанного. Функции такого анализа приписаны преимущественно вторичному височному полю 22, расположенному в верхней височной области.

Именно оно ответственно за дискретное восприятие звуков речи, в том числе, что принципиально важно, и за выделение из них акустических образов сигнальных (смыслоразличительных) признаков, получивших название фонематических.

Признается также, что фонематическая система языка фор­мируется при непосредственном участии артикуляционного ап­парата, благодаря чему вырабатываются и упрочиваются акустико-артикуляционные связи.

Помимо собственно коркового уровня слуховой зоны, имеет­ся базальное слуховое поле 20 и медиальный («глубокий») висок. Этот отдел мозга входит в так называемый «круг Пейпеца» (гиппокамп - ядра зрительного бугра - перегородки и мамиллярные тела - гипоталамус).

Медиальные отделы виска тесно связаны с неспецифически­ми образованиями лимбико-ретикулярного комплекса (отдела мозга, регулирующего тонус коры) - (рис. 12, цв. вкл).

Такой состав медиального виска обусловливает его важней­шую особенность - способность регулировать состояние актив­ности коры мозга в целом, процессов нейродинамики, вегета­тивной сферы, а в рамках высшей психической деятельности - эмоций, сознания и памяти.

^ Зрительная кора

Первичная зрительная кора простирается с обеих сторон вдоль шпорной борозды на медиальной поверхности затылочной Доли и распространяется на конверситальную поверхность заты­лочного полюса. Ядерная зона зрительной коры - это первичное корковое поле 17. Вторичные поля коры (18, 19) составляют ши­рокую зрительную сферу. По отношению к принципу функционирования этой зоны актуален тот же пересмотр принципов Рефлекторной теории ощущений, о котором упоминалось при освещении функциональной специализации височной (слухо­вой) коры. В результате этого пересмотра зрительное восприятие стало рассматриваться не как пассивный процесс, а как активное действие

Основным отличием деятельности зрительной, как и кожно-кинестетической, теменной коры, является то, что воспри­нимаемые ею сигналы не выстраиваются в последовательные ря­ды, а объединяются в одновременные группы Благодаря этому обеспечиваются сложные зрительные дифференцировки, пред­полагающие способность выделять тонкие оптические призна­ки При очаговых поражениях этой области возникает нередко встречающаяся в клинической практике оптическая агнозия. Еще в 1898 году Э Лессауэр (Е Lissauer) обозначил ее как «аппер­цептивную душевную слепоту» и отметил, что больные, страдаю­щие ею, не узнают зрительных изображений даже знакомых предметов, хотя могут узнавать их на ощупь. Впоследствии опти­ческая зрительная агнозия была подробно изучена и описана Е. П. Кок, Л С Цветковой и др., показавшими ее связь с амнестической афазией

В наиболее высокой по иерархии теменно-затылочной коре, представляющей собой области, где соединяются центральные концы зрительного и тактильного анализаторов («зоны перекрытия»), стимулы внешней среды объединяются в «симультанные синтезы», позволяющие воспринимать одномоментно сложные изображения, например, сюжетные картины. По представлени­ям нейропсихологии, поражение данной области приводит к на­рушениям симультанного зрительного гнозиса и системно обус­ловленной семантической афазии.

^ Тактильная кора

Синтез тактильных сигналов осуществляют теменные отделы коры головного мозга, аналогично тому, как теменно-затылочная область осуществляет оптическое восприятие Ядерной зоной этого анализатора является область задней центральной извили­ны Первичные поля тактильной коры обеспечивают кожно-кинестетическую чувствительность на физическом уровне (поле 3) Вторичные оке поля (2, 1, 5, 7) специализированы в отношении сложной дифференциации тактильных сигналов (стереогноза) Благодаря им возможно распознавание предметов на ощупь.

^ Двигательная кора

Двигательный «анализатор» понимается как состоящий из двух, совместно работающих отделов мозговой коры (постцентяльного и прецентрального) Вместе они составляют сенсомоторн ую область коры.

Постцентральная кора, или, иначе, нижнетеменная кора, наравне первичных полей (10, 11, 47) принимает тактильные сиг­налы и перерабатывает их в тактильные ощущения, в том числе и речевые

На уровне вторичных полей (2, 1, 5, 7) она обеспечивает ре­ализацию отдельных поз - кинестезии тела, конечностей, рече­вого аппарата

В рамках переднего блока мозга левого полушария для рече­вой функции наиболее значимой является передняя центральная извилина - премоторная кора на уровне вторичных полей (6, 8) Она обеспечивает реализацию различных двигательных актов, представляющих собой серию последовательных движений и носящих название динамического или, иначе, эфферентного, прак сиса Он, в свою очередь, составляет второе, дополнительно к афферентному, произвольное двигательное звено. Важно, что премоторная кора является способной не только выстраивать, но и запоминать двигательные последовательности (кинетические мелодии), без чего в рамках речевой деятельности было бы не­возможным плавное произнесение слов и фраз.

На уровне третичного поля 45 двигательная кора обеспечива­ет способность создавать программы различных видов деятель­ности. За счет этой области происходит оперирование типовыми программами освоенных действий, в том числе и речевых, на­пример, синтаксическими моделями предложений.

Ниже приведена таблица номеров полей мозга различных уровней (по Бродману)

Таблица 2


^ Мо даль­ности

Слуховая

Зрительная

Тактильная

«Двигательная»

Тип по­ля коры

I

II

III

I

II

III

I

II

III

I

II

III

По­ля


41,

22.

21,

17.

18,

-

3

2,1,

39,

10,

11,47.


6,8.

45.

В коре большого мозга происходит анализ всех раздражений, которые поступают из окружающей внешней и внутренней среды. Наибольшее число афферентных импульсов поступает к клеткам 3-го и 4-го слоев коры большого мозга. В коре большого мозга располагаются центры, регулирующие выполнение определенных функций. И. П. Павлов рассматривал кору большого мозга как совокупность корковых концов анализаторов. Под термином «анализатор» понимается сложный комплекс анатомических структур, который состоит из периферического рецепторного (воспринимающего) аппарата, проводников нервных импульсов и центра. В процессе эволюции происходит локализация функций в коре большого мозга. Корковый конец анализаторов – это не какая-либо строго очерченная зона. В коре большого мозга различают «ядро» сенсорной системы и «рассеянные элементы». Ядро – это участок расположения наибольшего количества нейронов коры, в которых точно проецируются все структуры периферического рецептора. Рассеянные элементы расположены вблизи ядра и на различном расстоянии от него. Если в ядре осуществляется высший анализ и синтез, то в рассеянных элементах – более простой. При этом зоны «рассеянных элементов» различных анализаторов не имеют четких границ и наслаиваются друг на друга.

Функциональная характеристика корковых зон лобной доли. В области предцентральной извилины лобной доли находится корковое ядро двигательного анализатора. Эту область еще называют сенсомоторной корой. Сюда приходит часть афферентных волокон от таламуса, несущих проприоцептивную информацию от мышц и суставов тела (рис. 8.7). Здесь также начинаются нисходящие пути к стволу мозга и спинному мозгу, обеспечивающие возможность сознательной регуляции движений (пирамидные пути). Поражение этой области коры приводит к параличу противоположной половины тела.

Рис. 8.7. Соматотопическое распределение в предцентральной извилине

В задней трети средней лобной извилины лежит центр письма. Эта зона коры дает проекции к ядрам глазодвигательных черепных нервов, а также с помощью корково-корковых связей сообщается с центром зрения в затылочной доле и центром управления мышцами рук и шеи в предцентральной извилине. Поражение этого центра приводит к нарушениям навыков письма под контролем зрения (аграфия).

В зоне нижней лобной извилины располагается речедвигательный центр (центр Брока). Он обладает ярко выраженной функциональной асимметрией. При его разрушении в правом полушарии теряется способность регулировать тембр и интонации, речь становится монотонной. При разрушении речедвигательного центра слева необратимо нарушается речевая артикуляция вплоть до потери способности к членораздельной речи (афазия) и пению (амузия). При частичных нарушениях может наблюдаться аграмматизм – неспособность правильно строить фразы.

В области передней и средней трети верхней, средней и частично нижней лобных извилин находится обширная передняя ассоциативная зона коры, осуществляющая программирование сложных форм поведения (планирование разных форм деятельности, принятие решений, анализ полученных результатов, волевое подкрепление деятельности, коррекция мотивационной иерархии).

Область лобного полюса и медиальной лобной извилины приурочена к регуляции активности эмоциогенных областей мозга, входящих в лимбическую систему, и имеет отношение к контролю над психо-эмоциональными состояниями. Нарушения в этой области мозга могут привести к изменениям того, что принято называть «структурой личности» и отразиться на характере человека, его ценностных ориентациях, интеллектуальной деятельности.

Орбитальная область содержит центры обонятельного анализатора и тесно связана в анатомическом и функциональном плане с лимбической системой мозга.

Функциональная характеристика корковых зон теменной доли. В постцентральной извилине и верхней теменной дольке располагается корковый центр анализатора общей чувствительности (болевой, температурной и тактильной), или соматосенсорная кора. Представительство различных участков тела в ней, как и в предцентральной извилине, построено по соматотопическому принципу. Этот принцип предполагает, что части тела проецируются на поверхность борозды в тех топографических отношениях, которые они имеют в теле человека. Однако представительство разных частей тела в коре мозга существенно различается. Наибольшее представительство имеют те области (кисть руки, голова, особенно язык и губы), которые связаны со сложными движениями типа письма, речи и т. п. Нарушения коры в этой области приводят к частичной или полной анестезии (потере чувствительности).

Поражения коры в области верхней теменной дольки приводят к снижению болевой чувствительности и нарушению стереогноза – узнавания предметов на ощупь без помощи зрения.

В нижней теменной дольке в области надкраевой извилины располагается центр праксии, регулирующий способность осуществлять сложнокоординированные, составляющие основу трудовых процессов действия, которые требуют специального обучения. Отсюда также берет начало значительное число нисходящих волокон, следующих в составе путей, управляющих сознательными движениями (пирамидные пути). Эта область теменной коры с помощью корково-корковых связей тесно взаимодействует с корой лобной доли и со всеми сенсорными зонами задней половины мозга.

В угловой извилине теменной доли располагается зрительный (оптический) центр речи. Его повреждение приводит к невозможности понимать читаемый текст (алексия).

Функциональная характеристика корковых зон затылочной доли. В области шпорной борозды находится корковый центр зрительного анализатора. Его повреждение приводит к слепоте. При нарушениях в соседних со шпорной бороздой участках коры в области затылочного полюса на медиальной и латеральной поверхностях доли может наступить потеря зрительной памяти, способности ориентироваться в незнакомой обстановке, нарушаются функции, связанные с бинокулярным зрением (способность с помощью зрения оценивать форму предметов, расстояние до них, правильно соразмерять в пространстве движения под контролем зрения и т. д.).

Функциональная характеристика корковых зон височной доли. В области верхней височной извилины в глубине боковой борозды, находится корковый центр слухового анализатора. Его повреждение приводит к глухоте.

В задней трети верхней височной извилины лежит слуховой центр речи (центр Вернике). Травмы в этой области приводят к неспособности понимать устную речь: она воспринимается как шум (сенсорная афазия).

В области средней и нижней височных извилин находится корковое представительство вестибулярного анализатора. Повреждения этой области приводят к нарушениям равновесия при стоянии и снижению чувствительности вестибулярного аппарата.

Функциональная характеристика корковых зон островковой доли.

Сведения, касающиеся функций островковой доли, противоречивы и недостаточны. Есть данные, что кора передней части островка имеет отношение к анализу обонятельных и вкусовых ощущений, а задней части – к обработке соматосенсорной информации и слуховому восприятию речи.

Функциональная характеристика лимбической системы . Лимбическая система – совокупность ряда структур головного мозга, включает поясную извилину, перешеек, зубчатую и парагиппокампальную извилины и др. Участвует в регуляции функций внутренних органов, обоняния, инстинктивного поведения, эмоций, памяти, сна, бодрствования и др.

Поясная и парагиппокампальная извилины имеют непосредственное отношение к лимбической системе мозга (рис. 8.8 и 8.9). Ею контролируется комплекс вегетативных и поведенческих психоэмоциональных реакций на внешнесредовые воздействия. В парагиппокампальной извилине и крючке располагается корковое представительство вкусового и обонятельного анализаторов. Вместе с тем, гиппокамп играет важную роль в обучении: с ним связаны механизмы кратковременной и долговременной памяти.

Рис. 8.8. Медиальная поверхность головного мозга

Базальные (подкорковые центральные) ядра – скопления серого вещества, образующего отдельно лежащие ядра, которые залегают ближе к основанию мозга. К ним относятся полосатое тело, составляющее у низших позвоночных преобладающую массу полушарий; ограда и миндалевидное тело (рис. 8.10).

Рис. 8.9. Лимбическая система

Рис. 8.10. Базальные ганглии

Полосатое тело состоит из хвостатого и чечевицеобразного ядер. Серое вещество хвостатого и чечевицеобразного ядер чередуется с прослойками белого вещества, что и обусловило общее название этой группы подкорковых ядер – полосатое тело.

Хвостатое ядро располагается латеральнее и выше таламуса будучи отделенным от него терминальной полоской. Хвостатое ядро имеет головку, тело и хвост. Чечевицеобразное ядро расположено латеральнее хвостатого. Прослойка белого вещества – внутренняя капсула, отделяет чечевицеобразное ядро от хвостатого и от таламуса. В чечевицеобразном ядре различают бледный шар (медиально) и скорлупу (латерально). Наружная капсула (узкая полоска белого вещества) отделяет скорлупу от ограды.

Хвостатое ядро, скорлупа и бледный шар управляют сложнокоординированными автоматизированными движениями организма, контролируют и поддерживают тонус скелетных мышц, а также являются высшим центром регуляции таких вегетативных функций, как теплопродукция и углеводный обмен в мускулатуре тела. При повреждениях скорлупы и бледного шара могут наблюдаться медленные стереотипные движения (атетоз).

Ядра полосатого тела относятся к экстрапирамидной системе, участвующей в управлении движениями, регуляции мышечного тонуса.

Ограда – это вертикальная пластинка серого вещества, нижняя часть которой продолжается в вещество передней продырявленной пластинки на основании мозга. Ограда расположена в белом веществе полушария латеральнее чечевицеобразного ядра и имеет многочисленные связи с корой больших полушарий.

Миндалевидное тело залегает в белом веществе височной доли полушария, на 1,5–2 см кзади от ее височного полюса, посредством ядер имеет связи с корой большого мозга, со структурами обонятельной системы, с гипоталамусом и ядрами ствола мозга, контролирующими вегетативные функции организма. Его разрушение приводит к агрессивному поведению или апатичному, вялому состоянию. Благодаря своим связям с гипоталамусом миндалевидное тело влияет на эндокринную систему, а также на репродуктивное поведение.

К белому веществу полушария относятся внутренняя капсула и волокна, проходящие через спайки мозга (мозолистое тело, передняя спайка, спайка свода) и направляющиеся к коре и базальным ядрам, свод, а также системы волокон, соединяющих участки коры и подкорковые центры в пределах одной половины мозга (полушария).

I и II боковые желудочки. Полостями полушарий большого мозга являются боковые желудочки (I и II), расположенные в толще белого вещества под мозолистым телом. Каждый желудочек состоит из четырех частей: передний рог залегает в лобной, центральная часть – в теменной, задний рог – в затылочной и нижний рог – в височной доле (рис. 8.11).

Передние рога обоих желудочков отделены друг от друга двумя пластинками прозрачной перегородки. Центральная часть бокового желудочка изгибается сверху вокруг таламуса, образует дугу и переходит кзади – в задний рог, книзу в нижний рог. В центральную часть и нижний рог бокового желудочка вдается сосудистое сплетение, которое через межжелудочковое отверстие соединяется с сосудистым сплетением третьего желудочка.

Рис. 8.11. Желудочки мозга:

1 – левое полушарие головного мозга, 2 – боковые желудочки, 3 – третий желудочек, 4 – водопровод среднего мозга, 5 – четвертый желудочек, 6 – мозжечок, 7 – вход в центральный канал спинного мозга, 8 – спинной мозг

Система желудочков включает парные С-образные полости – боковые желудочки с их передними, нижними и задними рогами, простирающимися соответственно в лобные доли, в височные доли и в затылочные доли полушарий головного мозга. Около 70 % всей цереброспинальной жидкости секретируется сосудистым сплетением стенок боковых желудочков.

Из боковых желудочков жидкость проходит через межжелудочковые отверстия в щелевидную полость третьего желудочка, расположенного в сагиттальной плоскости мозга и разделяющего на две симметричные половины таламус и гипоталамус. Полость третьего желудочка соединяется узким каналом – водопроводом среднего мозга (сильвиевым водопроводом) с полостью четвертого желудочка. Четвертый желудочек несколькими каналами (апертурами) сообщается с подпаутинными пространствами головного и спинного мозга.

Промежуточный мозг

Промежуточный мозг расположен под мозолистым телом, состоит из таламуса, эпиталамуса, метаталамуса и гипоталамуса (рис. 8.12, см. рис. 7.2).

Таламус (зрительный бугор) – парный, яйцевидной формы, образован главным образом серым веществом. Таламус является подкорковым центром всех видов чувствительности. Медиальная поверхность правого и левого таламусов, обращенные друг к другу, образуют боковые стенки полости промежуточного мозга – III желудочка, они соединены между собой межталамическим сращением. Таламус содержит серое вещество, состоящее из скоплений нейронов, которые образуют ядра таламуса. Ядра разделены тонкими прослойками белого вещества. Исследовано около 40 ядер таламуса. Основными ядрами являются передние, медиальные, задние.

Рис. 8.12. Отделы мозга

Эпиталамус включает шишковидное тело, поводки и треугольники поводков. Шишковидное тело, или эпифиз, являющийся железой внутренней секреции, как бы подвешен на двух поводках, соединенных между собой спайкой и связанных с таламусом посредством треугольников поводков. В треугольниках поводках заложены ядра, относящиеся к обонятельному анализатору. У взрослого человека средняя длина эпифиза составляет ~ 0,64 см, а масса ~ 0,1 г. Метаталамус образован парными медиальным и латеральным коленчатыми телами, лежащими позади каждого таламуса. Медиальное коленчатое тело находится позади подушки таламуса, оно является наряду с нижними холмиками пластинки крыши среднего мозга (четверохолмия) подкорковым центром слухового анализатора. Латеральное – расположено книзу от подушки, оно вместе с верхними холмиками пластинки крыши является подкорковым центром зрительного анализатора. Ядра коленчатых тел связаны с корковыми центрами зрительного и слухового анализаторов.

Гипоталамус , представляющий собой вентральную часть промежуточного мозга, располагается кпереди от ножек мозга и включает ряд структур, которые имеют различное происхождение – из конечного мозга образуется расположенная кпереди зрительная часть (зрительный перекрест, зрительный тракт, серый бугор, воронка, нейрогипофиз); из промежуточного – обонятельная часть (сосцевидные тела и собственно подталамическая область – подбугорье) (рис. 8.13).

Рис 8.13. Базальные ядра и промежуточный мозг

Гипоталамус является центром регуляции эндокринных функций, он объединяет нервные и эндокринные регуляторные механизмы в общую нейроэндокринную систему, координирует нервные и гормональные механизмы регуляции функций внутренних органов. В гипоталамусе имеются нейроны обычного типа и нейросекреторные клетки. Гипоталамус образует с гипофизом единый функциональный комплекс, в котором первый играет регулирующую, а второй эффекторную роль.

В гипоталамусе более 30 пар ядер. Крупные нейросекреторные клетки супраоптического и паравентрикулярного ядер передней гипоталамической области вырабатывают нейросекреты пептидной природы.

В медиальном гипоталамусе залегают нейроны, которые воспринимают все изменения, происходящие в крови и спинномозговой жидкости (температуру, состав, содержание гормонов и т.д.). Медиальный гипоталамус связан также с латеральным гипоталамусом. Последний не имеет ядер, но обладает двусторонними связями с вышележащими и нижележащими отделами мозга. Медиальный гипоталамус является связующим звеном между нервной и эндокринной системами. В последние годы из гипоталамуса выделены энкефалины и эндорфины (пептиды), обладающие морфиноподобным действием. Считают, что они участвуют в регуляции поведения и вегетативных процессов.

Кпереди от заднего продырявленного вещества лежат два небольщих шаровидной формы сосцевидных тела, образованные серым веществом, покрытым тонким слоем белого. Ядра сосцевидных тел являются подкорковыми центрами обонятельного анализатора. Кпереди от сосцевидных тел расположен серый бугор, который спереди ограничен зрительным перекрестом и зрительным трактом, он представляет собой тонкую пластинку серого вещества на дне III желудочка, которая вытянута книзу и кпереди и образует воронку. Конец ее переходит в гипофиз – железу внутренней секреции, расположенную в гипофизарной ямке турецкого седла. В сером бугре залегают ядра вегетативной нервной системы. Они также оказывают влияние на эмоциональные реакции человека.

Часть промежуточного мозга, расположенная ниже таламуса и отделенная от него гипоталамической бороздой, составляет собственно подбугорье. Сюда продолжаются покрышки ножек мозга, здесь заканчиваются красные ядра и черное вещество среднего мозга.

III желудочек. Полость промежуточного мозга – III желудочек представляет собой узкое, расположенное в сагиттальной плоскости щелевидное пространство, ограниченное с боков медиальными поверхностями таламусов, снизу гипоталамусом, спереди столбами свода, передней спайкой и терминальной пластинкой, сзади эпиталамической (задней) спайкой, сверху – сводом, над которым располагается мозолистое тело. Собственно верхняя стенка образована сосудистой основой III желудочка, в которой залегает его сосудистое сплетение.

Полость III желудочка кзади переходит в водопровод среднего мозга, а спереди по бокам через межжелудочковые отверстия сообщается с боковыми желудочками.

Средний мозг

Средний мозг – самая маленькая часть мозга, лежащая между промежуточным мозгом и мостом (рис.8.14 и 8.15). Область над водопроводом называется крышей среднего мозга, и на ней располагаются четыре выпуклости – пластина четверохолмия с верхними и нижними холмиками. Отсюда выходят пути зрительных и слуховых рефлексов, направляющиеся в спинной мозг.

Ножки мозга – это белые округлые тяжи, выходящие из моста и направляющиеся вперед к полушариям большого мозга. Из борозды на медиальной поверхности каждой ножки выходит глазодвигательный нерв (III пара черепных нервов). Каждая ножка состоит из покрышки и основания, границей между ними является черное вещество. Цвет зависит от обилия меланина в его нервных клетках. Черное вещество относится к экстрапирамидной системе, которая участвует в поддержании мышечного тонуса и автоматически регулирует работу мышц. Основание ножки образовано нервными волокнами, идущими от коры большого мозга в спинной и продолговатый мозг и мост. Покрышка ножек мозга содержит главным образом восходящие волокна, направляющиеся к таламусу, среди которых залегают ядра. Самыми крупными являются красные ядра, от которых начинается двигательный красноядерно-спинномозговой путь. Кроме того, в покрышке располагаются ретикулярная формация и ядро дорсального продольного пучка (промежуточное ядро).

Задний мозг

К заднему мозгу относится мост, расположенный вентрально, и лежащий позади моста мозжечок.

Рис. 8.14. Схематическое изображение продольного среза головного мозга

Рис. 8.15. Поперечный срез через средний мозг на уровне верхних холмиков (плоскость среза показана на рис. 8.14)

Мост выглядит в виде лежащего поперечно утолщенного валика, от латеральной стороны которого справа и слева отходят средние мозжечковые ножки. Задняя поверхность моста, прикрытая мозжечком, участвует в образовании ромбовидной ямки, передняя (прилежащая к основанию черепа) граничит с продолговатым мозгом внизу и ножками мозга вверху (см. рис. 8.15). Она поперечно исчерчена в связи с поперечным направлением волокон, которые идут от собственных ядер моста в средние мозжечковые ножки. На передней поверхности моста по средней линии продольно расположена базилярная борозда, в которой проходит одноименная артерия.

Мост состоит из множества нервных волокон, образующих проводящие пути, среди которых находятся клеточные скопления – ядра. Проводящие пути передней части связывают кору большого мозга со спинным мозгом и с корой полушарий мозжечка. В задней части моста (покрышке) проходят восходящие проводящие пути и частично нисходящие, располагается ретикулярная формация, ядра V, VI, VII, VIII пар черепных нервов. На границе между обеими частями моста лежит трапециевидное тело, образованное ядрами и поперечно идущими волокнами проводящего пути слухового анализатора.

Мозжечок играет основную роль в поддержании равновесия тела и координации движений. Наибольшего развития мозжечок достигает у человека в связи с прямохождением и приспособлением руки к труду. В этой связи у человека сильно развиты полушария (новая часть) мозжечка.

В мозжечке различают два полушария и непарную срединную филогенетически старую часть – червь (рис. 8.16).

Рис. 8.16. Мозжечок: вид сверху и снизу

Поверхности полушарий и червя разделяют поперечные параллельные борозды, между которыми расположены узкие длинные листки мозжечка. В мозжечке различают переднюю, заднюю и клочково-узелковую доли, отделенные более глубокими щелями.

Мозжечок состоит из серого и белого вещества. Белое вещество, проникая между серым, как бы ветвится, образуя на срединном разрезе фигуру ветвящегося дерева – «дерево жизни» мозжечка.

Кора мозжечка состоит из серого вещества толщиной 1–2,5 мм. Кроме того, в толще белого вещества имеются скопления серого – парные ядра: зубчатое ядро, пробковидное, шаровидное и ядро шатра. Афферентные и эфферентные волокна, связывающие мозжечок с другими отделами, образуют три пары мозжечковых ножек: нижние направляются к продолговатому мозгу, средние – к мосту, верхние – к четверохолмию.

К моменту рождения мозжечок менее развит по сравнению с конечным мозгом (особенно полушария), но на первом году жизни он развивается быстрее других отделов мозга. Выраженное увеличение мозжечка отмечается между 5-м и 11-м месяцами жизни, когда ребенок учится сидеть и ходить.

Продолговатый мозг является непосредственным продолжением спинного мозга. Нижней его границей считают место выхода корешков 1-го шейного спинномозгового нерва или перекрест пирамид, верхней – задний край моста, длина его около 25 мм, форма приближается к усеченному конусу, обращенному основанием вверх.

Передняя поверхность разделена передней срединной щелью, по бокам которой располагаются пирамиды, образованные пирамидными проводящими путями, частично перекрещивающимися (перекрест пирамид) в глубине описанной щели на границе со спинным мозгом. Волокна пирамидных путей соединяют кору большого мозга с ядрами черепных нервов и передними рогами спинного мозга. Сбоку от пирамиды с каждой стороны располагается олива, отделенная от пирамиды передней латеральной бороздой.

Задняя поверхность продолговатого мозга разделена задней срединной бороздой, по бокам от нее расположены продолжения задних канатиков спинного мозга, которые кверху расходятся, переходя в нижние мозжечковые ножки.

Продолговатый мозг построен из белого и серого вещества, последнее представлено ядрами IX–XII пар черепных нервов, олив, центрами дыхания и кровообращения, ретикулярной формацией. Белое вещество образовано длинными и короткими волокнами, составляющими соответствующие проводящие пути.

Ретикулярная формация представляет собой совокупность клеток, клеточных скоплений и нервных волокон, расположенных в стволе мозга (продолговатый мозг, мост и средний мозг) и образующих сеть. Ретикулярная формация связана со всеми органами чувств, двигательными и чувствительными областями коры большого мозга, таламусом и гипоталамусом, спинным мозгом. Она регулирует уровень возбудимости и тонуса различных отделов ЦНС, включая кору большого мозга, участвует в регуляции уровня сознания, эмоций, сна и бодрствования, вегетативных функций, целенаправленных движений.

IV желудочек – это полость ромбовидного мозга, книзу он продолжается в центральный канал спинного мозга. Дно IV желудочка благодаря своей форме называется ромбовидной ямкой (рис. 8.17). Она образована задними поверхностями продолговатого мозга и моста, верхними сторонами ямки служат верхние, а нижними – нижние мозжечковые ножки.

Рис. 8.17. Ствол мозга; вид сзади. Мозжечок удален, ромбовидная ямка открыта

Срединная борозда делит дно ямки на две симметричные половины, по обеим сторонам борозды видны медиальные возвышения, расширяющиеся в середине ямки в правый и левый лицевые бугорки, где залегают: ядро VI пары черепных нервов (отводящий нерв), глубже и латеральнее – ядро VII пары (лицевой нерв), а книзу медиальное возвышение переходит в треугольник подъязычного нерва, латеральнее которого находится треугольник блуждающего нерва. В треугольниках, в толще вещества мозга залегают ядра одноименных нервов. Верхний угол ромбовидной ямки сообщается с водопроводом среднего мозга. Боковые отделы ромбовидной ямки получили название вестибулярных полей, где лежат слуховые и вестибулярные ядра преддверно-улиткового нерва (VIII пара черепных нервов). От слуховых ядер отходят к срединной борозде поперечные мозговые полоски, располагающиеся на границе между продолговатым мозгом и мостом и являющиеся волокнами проводящего пути слухового анализатора. В толще ромбовидной ямки залегают ядра V, VI, VII, VIII, IX, X, XI и XII пар черепных нервов.

Кровоснабжение мозга

Кровь в мозг поступает по двум парным артериям: внутренней сонной и позвоночной. В полости черепа обе позвоночные артерии сливаются, вместе образуя основную (базальную) артерию. На основании головного мозга основная артерия сливается с двумя сонными артериями, образуя единое артериальное кольцо (рис.8.18). Такой каскадный механизм кровоснабжения головного мозга гарантирует достаточный кровоток, если какая-нибуь из артерий выйдет из строя.

Рис. 8.19. Артерии на основании головного мозга и вилизиев круг (правое полушарие мозжечка и правая височная доля удалены); Вилизиев круг показан пунктирной линией

От артериального кольца отходят три сосуда: передняя, задняя и средняя мозговые артерии, питающие полушария головного мозга. Эти артерии идут по поверхности головного мозга, а уже от них вглубь мозга кровь доставляется более мелкими артериями.

Систему сонных артерий называют каротидным бассейном, который обеспечивает 2/3 потребностей мозга в артериальной крови и кровоснабжает передние и средние отделы мозга.

Систему артерий «позвоночная – основная» называют вертебробазилярным бассейном, который обеспечивает 1/3 потребностей головного мозга и доставляет кровь в задние отделы.

Отток венозной крови происходит преимущественно через поверхностные и глубокие мозговые вены и венозные синусы (рис. 8.19). В конечном счете кровь направляется во внутреннюю яремную вену, которая выходит из черепа через яремное отверстие, расположенное на основании черепа сбоку от большого затылочного отверстия.

Оболочки мозга

Оболочки головного мозга защищают его от механических повреждений и от проникновения инфекций и токсических веществ (рис. 8.20).

Рис. 8.19. Вены и венозные синусы головного мозга

Рис.8.20. Коронарный срез через череп оболочки и мозг

Первая оболочка, защищающая мозг, носит название «мягкая мозговая оболочка». Она тесно прилегает к мозгу, заходит во все борозды и полости (желудочки), имеющиеся в толще самого мозга. Желудочки мозга заполнены жидкостью, которую называют ликвором или спинномозговой (цереброспинальной) жидкостью. Твердая мозговая оболочка непосредственно примыкает к костям черепа. Между мягкой и твердой оболочкой располагается паутинная (арахноидальная) оболочка. Между паутинной и мягкой оболочками существует пространство (подпаутинное или субарахноидальное пространство), заполненное ликвором. Над бороздами мозга паутинная оболочка перекидывается, образуя мостик, а мягкая сливается с ними. Благодаря этому между двумя оболочками образуются полости, называемые цистернами. В цистернах находится цереброспинальная жидкость. Эти цистерны защищают мозг от механических травм, выполняя роль «подушек безопасности».

Нервные клетки и сосуды окружены нейроглией – специальными клеточными образованиями, которые выполняют защитную, опорную и обменную функции, обеспечивая реактивные свойства нервной ткани и участвуя в образовании рубцов, в реакциях воспаления и т.п.

При повреждениях головного мозга включается механизм пластичности, когда сохранившиеся структуры головного мозга берут на себя функции пораженных участков.


Похожая информация.


Пространственная локализация функций в коре головного мозга

А. А. Винокуров, В.И. Гужов, И.О. Марченко, М.А. Савин Новосибирский государственный технический университет

Аннотация: В статье представлен обзор современных представлений о локализации функций в коре головного мозга с точки зрения его структуры.

Ключевые слова: головной мозг, кора головного мозга, contex cerebi, неокортекс, neocortex, цитоархитектоника, функциональная карта коры головного мозга, локализация функций в коре головного мозга, сенсомоторный центр, центр анализа вкусовых ощущений, слуховой центр, вестибулярный центр.

Введение

Людей всегда интересовала природа сложного человеческого поведения: мышления, механизмов памяти, психических процессов, творческих способностей. Этими вопросами в древние времена занимались представители различных религий, жрецы, философы. К концу XVIII в. ученые попытались решить эту проблему с точки зрения устройства головного мозга.

Франц Иосиф Галль первый попытался доказать, что все психические функции человека обусловлены устройством мозга. Помимо этого, Галль сформулировал учение о локализации функций и предложил определять наклонности характера и человеческую индивидуальность по шишкам на поверхности черепа. Идею осмеяли, а реальные заслуги Галля были забыты. В начале XIX в. была популярна теория М. Флуранса. Он считал, что кора больших полушарий мозга человека не имеет функциональной специализации и утверждал о равноправности всех отделов коры головного мозга. В 1861 г. Брок установил зависимость между поражением задней трети нижней лобной извилины левого полушария и нарушением артикулированной речи. В дальнейшем Брок и Варнике продолжали углублять идею локализации функций и получили некоторые факты, доказывающие эту идею. Открытие того, что кора головного мозга имеет

высоко дифференцированное строение и что с отдельных ее участков можно вызывать строго дифференцированные эффекты, прочно вошли в науку .

В настоящее время существует достаточно много методов исследования структуры и функционального состояния головного мозга . Развиваются и новые направления исследований.

Исследователи из Исследовательского центра Юлих и Монреальского неврологического института создали первую трехмерную цифровую модель мозга высокого разрешения и назвали ее BigBrain (большой мозг). Используя высокотехнологичную резку, исследователи разрезали человеческий мозг на 7404 тонких пластинок каждый с толщину полиэтиленовой пленки .

Далее, исследователи окрашивали листы для повышения контрастности, сфотографировали каждый лист планшетным сканером (с разрешением 13 тысяч на 11 тысяч пикселей.), а затем использовали вычислительные мощности суперкомпьютеров из семи центров Канады для цифровой склейки изображений (использовалось около 100 000 компьютерных процессоров). Исследователи проанализировали изображения объемом около одного терабайта. В результате получился самый подробный атлас мозга (Рис.1).

Рис. 1. - 3-0 атлас человеческого мозга (bigbrain.loris.ca) Такой анатомический атлас не только упрощает работу неврологов и нейрохирургов, но и предоставляет возможность понять, как мозг обрабатывает и воспринимает информацию.

Цифровая реконструкция мозга человека позволяет разглядеть его на уровне отдельных клеток: ее разрешение составляет 20 микрон. В общей сложности в ходе кропотливой работы, на которую ученые потратили 10 лет, было зафиксировано 80 миллиардов нейронов. В настоящее время делаются попытки построения модели мозга с разрешением 1 микрометр. Эта модель способна будет отразить морфологию мозга на субклеточном уровне.

В США объявили о выделении 130 миллионов долларов для проекта по картографированию мозга человека, чтобы помочь найти лечение от таких расстройств, как, например, болезнь Альцгеймера. К крупнейшим инвесторам в сфере исследования мозга относится траст Wellcome, который ежегодно вкладывает 80 миллионов фунтов в эту область. Европейский союз готов выделить миллиард евро на разработку модели человеческого мозга с использованием компьютерных технологий.

В данной статье рассматриваются современные представления о локализации функций в коре головного мозга с точки зрения его структуры. Сведения о функциональных полях головного мозга человека получены в различных исследованиях, например, при сопоставлении локальных разрушений участков коры с наблюдаемыми отклонениями в поведении, проведение прямой стимуляции коры микроэлектродами, позитронно-эмиссионной томографией и другими методами, описанными в .

Глобальная структура головного мозга

Головной мозг - высший орган нервной системы - как анатомо-функциональное образование может быть условно подразделен на несколько уровней (Рис. 2), каждый из которых осуществляет собственные функции.

I уровень - кора головного мозга - осуществляет высшее управление чувствительными и двигательными функциями, преимущественное управление сложными когнитивными процессами.

II уровень - базальные ядра полушарий большого мозга - осуществляет управление непроизвольными движениями и регуляцию мышечного тонуса.

III уровень - гиппокамп, гипофиз, гипоталамус, поясная извилина, миндалевидное ядро - осуществляет преимущественное управление эмоциональными реакциями и состояниями, а также эндокринную регуляцию.

IV уровень (низший) - ретикулярная формация и другие структуры ствола мозга - осуществляет управление вегетативными процессами.

Как анатомическое образование большой мозг (cerebrum) состоит из двух полушарий- правого и левого (hemisphererum cerebri dextrum et sinistrum).

В каждом полушарии имеется пять долей (Рис. 3, Рис.4):

1) лобная (lobus frontalis);

2) теменная (lobus parietalis);

3) затылочная (lobus occipitalis);

4) височная (lobus temporalis);

5) островковая, островок (lobus insularis, insule).

Рис. 2. - Доли полушарий головного мозга Все данные (и анатомические, и физиологические, и клинические) свидетельствуют о ведущей роли коры больших полушарий в мозговой организации психических процессов. Кора больших полушарий является

наиболее дифференцированным по строению и функциям отделом головного мозга.

Кора головного мозга (contex cerebi) подразделяется на следующие структурные элементы:

Древнюю (paleocortex);

Старую (archicortex);

Среднюю (mesocortex);

Новую (neocortex).

У человека новая кора - наиболее сложна по строению - по протяженности составляет 96% от всей поверхности полушарий, поэтому рассматривать будем именно её.

Все области новой коры построены по единому принципу. Наиболее типична для человека новая шестислойная кора, однако в разных отделах мозга число слоев различно. Каждый слой отличается по толщине, строению нейронов и их организации.

Цитоархитектонические поля

Кора полушарий головного мозга человека неоднородна даже в пределах одного полушария и имеет различный клеточный состав (Рис. 3).

Рис. 3. - Схема нейронного и цитоархитектонического строения некоторых зон коры головного мозга.

Это позволило выделить в ней однотипно организованные центры -цитоархитектонические поля.

Цитоархитектоника - это наука, изучающая особенности строения коры головного мозга, касающихся клеток. Изучает отличительные признаки различных формаций коры, касающиеся общего характера клеточного строения: величины и формы клеточных элементов, их распределения на слови, густоты их расположения во всем поперечнике коры и в отдельных её слоях, ширины коры и ее слоев, их деления на подслои, наличия тех или иных специальных клеточных форм в том или ином слое, распределения клеток в вертикальном направлении.

Учитывая, что, головной мозг различается у мужчин и женщин, у разных рас, этнических групп и даже внутри одной семьи, то расположение, размер и наличие цитоархитектонических полей у разных людей будут различаться.

Поэтому приведенные на рисунке 4, изображения, демонстрирующие цитоархитектонические поля, являются приближенными.

Рис. 4. - Карта цитоархитектонических полей мозга человека (Институт мозга): а - наружная боковая поверхность; б - внутренняя боковая поверхность; в - передняя поверхность; г - задняя поверхность; д - верхняя

поверхность; е - нижняя поверхность; ж - один из типичных вариантов расположения полей на надвисочной поверхностью.

Цифрами обозначены цитоархитектонические поля различные по строению. Границы цитоархитектонических полей совпадают с функционально специализированными участками неокортекса, поэтому цитоархитектонические карты головного мозга отражают представительство различных органов чувств, моторных и ассоциативных центров.

Сведения о функциональных полях человека получены в исследованиях различного характера, при сопоставлении локальных разрушений участков коры с наблюдаемыми отклонениями в поведении, проведение прямой стимуляции коры микроэлектродами, позитронно-эмиссионной томографией и другими методами, описанными в .

В настоящее время зависимости между цитоархитектоническими полями и их функциями не выявлены полностью. Рассмотрим то, что изучено.

Функциональные центры лобной области

Рассмотрим организацию сенсомоторных центров (Рис. 5) в полях 4 и 6, входящих в состав предцентральной извилины лобной доли головного мозга.

Рис. 5. - Сенсомоторные центры мозга человека (по данным разных авторов).

Между синей и красной линиями лежат моторные центры коры, а между красной и зелёной линиями - сенсомоторные.

Сенсомоторные центры мозга человека, отмеченные на рисунке 5: 1 - корень языка; 2 - гортань; 3 - нёбо; 4 - нижняя челюсть; 5 - язык; 6 - нижняя часть лица; 7 - верхняя часть лица; 8 - шея; 9 - пальцы руки; 10 -кисть; 11 - рука от плеча до кисти; 12 - плечо; 13 - лопатка; 14 - грудь; 15 -живот; 16 - голень; 17 - колено; 18 - бедро; 19 - пальцы ноги; 20 - большой палец ноги; 21 - четыре пальца ноги; 22 - стопа; 23 - лицо; 24 - глотка.

Рассмотрим организацию сенсомоторных центров (Рис. 6) в полях 8, 9, 44, 45, 46, входящих в лобные области головного мозга (Рис. 4).

Рис. 6. - Сенсомоторные центры лобной области мозга человека (по данным

Сенсомоторные центры мозга человека, отмеченные на рисунке 13.

1) моторное речевое поле, или зона Брока (поле 44, 45);

2) поле контроля над согласованными движениями (поле 46);

3) координация движений глаз (поле 8);

4) поле слежения за объектом и центр контроля движений глаз, связанные с вниманием (46);

5) тонус конечностей с противоположной стороны тела (поле 8);

6) сочетанное вращение тела (поле 8)

7) контроль над движениями глаз и головы в противоположную сторону, статика головы (поле 8).

Предцентральные области, ответственные за сложные произвольные движения, интегрированы со специализированными моторными полями. При помощи этих полей осуществляются сложные координированные движения

глаз, головы, рук и всего тела. Именно поэтому в неокортексе человека отсутствуют резкие цитоархитектонические границы между предцентральной и лобной областями.

Зона Брока (поля 44 и 45) является своеобразной надстройкой над моторными и сенсорными полями, расположенными вокруг центральной борозды. Размер этих полей непостоянен и может различаться у отдельных людей в несколько раз.

Мы подробно описали основные функциональные центры лобной области. Теперь кратко рассмотрим функции других областей коры головного мозга.

Островковая область отвечает за приём и анализ вкусовых ощущений, а также осознанно контролирует процесс питания.

Височная область отвечает за слух и анализ полученных звуков, а также отвечает за вестибулярный аппарат.

Теменная область, как и лобная, составляет значительную часть полушарий головного мозга. Функция теменной доли связана с восприятием и анализом чувствительных раздражений, пространственной ориентацией.

Затылочная область связана с восприятием и переработкой зрительной информации, организацией сложных процессов зрительного восприятия.

Заключение

Представлена глобальная структура головного мозга. Представлен обзор современных представлений по локализации функций в коре головного мозга. Показано, что локализация функций совпадает с локализацией различных структурных элементов мозга. Отметим, что в связи с большой изменчивостью головного мозга, представленные данные имеют

приближенный характер. У каждого человека функциональные зоны будут разными по площади и немного отличаться по расположению.

На данный момент существует много различного рода «пробелов» в понимании организации головного мозга и функций различных его разделов. Проблема локализации функций в коре головного мозга полностью не решена. Поэтому оправдано огромное внимание исследователей к изучению структуры и построению модели головного мозга.

Литература

1. Лурия А. Р. Высшие корковые функции человека и их нарушения при локальных поражениях мозга. Москва: «Издательство Московского университета», 19б2. 42б с.

2. Гужов В. И., Винокуров А. А. Методы исследования структуры и функционального состояния головного мозга // Автоматика и программная инженерия. 2G14. № 3 (9). С. SG-SS.

3. Katrin Amunts, Claude Lepage, Louis Bor-geat, Hartmut Mohlberg, Timo Dickscheid, Marc-Étienne Rousseau, Sebastian Bludau, Pierre-Louis Bazin, Lindsay B. Lewis, Ana-Maria Oros-Peusquens, Nadim J. Shah, Thomas Lippert, Karl Zilles, Alan C. Evans. REPORT BigBrain: An Ultrahigh-Resolution 3D Human Brain Model. DOI: 10.1126/science.1235381. Science 21 June 2G13: Vol. 34G no. б139. pp.1472-1475.

4. Белик Д. В., Дмитриев Н.А., Пустовой С.А. Исследование путей аудиоцветовизуальной стимуляции полей памяти мозга в после-инсультный период // Актуальные проблемы электронного приборостроения (АПЭП-2G14): тр. 12 междунар. конф., Новосибирск, 2-4 окт. 2G14 г.: в 7 т. -Новосибирск: Изд-во НГТУ, 2G14. С. 12G-124.

5. M. Hallett. Transcranial magnetic stimulation and the human brain. Nature 4G6. 2GGG. pp. 147-15G.

6. Федотов А. А. Измерительный преобразователь вызванных аудиторных потенциалов биоэлектрической активности мозга // Инженерный вестник Дона, 2012, №4 URL: ivdon.ru/ru/magazine/archive/n4p1y2012/1107.

7. Миняева Н.Р. Вызванная активность мозга при восприятии фигур Канизса // Инженерный вестник Дона, 2012, №4 URL: ivdon.ru/magazine/archive/n4p1y2012/1131.

8. Kuo C-C, Luu P, Morgan KK, Dow M, Davey C. Localizing Movement-Related Primary Sensorimotor Cortices with Multi-Band EEG Frequency Changes and Functional MRI. PLoS ONE 9(11): e112103. 2014. p. 14

9. Савельев С.В. Возникновение мозга человека. М: ВЕДИ, 2010. 324 с.: ил.

10. Хомская Е. Д. Нейропсихология: 4-е издание. СПб.: Питер, 2005. 496 с.: ил.

1. Lurija A.R. Vysshie korkovye funkcii cheloveka i ih narushenija pri lokal"nyh porazhenijah mozga . Moskva: «Izdatel"stvo Moskovskogo universiteta», 1962. 426 p.

2. Guzhov V.I., Vinokurov A.A. Automatics and Program Engineering. 2014. № 3 (9). pp. 80-88.

3. Katrin Amunts, Claude Lepage, Louis Bor-geat, Hartmut Mohlberg, Timo Dickscheid, Marc-Etienne Rousseau, Sebastian Bludau, Pierre-Louis Bazin, Lindsay B. Lewis, Ana-Maria Oros-Peusquens, Nadim J. Shah, Thomas Lippert, Karl Zilles, Alan C. Evans. DOI: 10.1126/science.1235381. Science 21 June 2013: Vol. 340 no. 6139. pp.1472-1475.

4. Belik D. V., Dmitriev N.A., Pustovoj S.A. Aktual"nye problemy jelektronnogo priborostroenija (APJeP-2014): tr. 12 mezhdunar. konf.,

Novosibirsk, 2-4 okt. 2014 g.: v 7 t. - Novosibirsk: Izd-vo NGTU, 2014. pp. 120124.

5. M. Hallett. Nature 406. 2000. pp. 147-150.

6. Fedotov A.A. Inzenernyj vestnik Dona (Rus), 2012, №4 URL: ivdon.ru/ru/magazine/archive/n4p1y2012/1107.

7. Minjaeva N.R. Inzenernyj vestnik Dona (Rus), 2012, №4 URL: ivdon.ru/magazine/archive/n4p1y2012/1131.

8. Kuo C-C, Luu P, Morgan KK, Dow M, Davey C. PLoS ONE 9(11): e112103. 2014. p. 14

9. Savel"ev S.V. Vozniknovenie mozga cheloveka . M: VEDI, 2010. 324 p.: il.

10. Homskaja E.D. Nejropsihologija: 4-e izdanie . SPb.: Piter, 2005. 496 p: il.