Органические вещества - углеводы, белки, липиды, нуклеиновые кислоты, атф. Строение АТФ и биологическая роль

В любой клетке нашего организма протекают миллионы биохимических реакций. Они катализируются множеством ферментов, которые зачастую требуют затрат энергии. Где же клетка ее берет? На этот вопрос можно ответить, если рассмотреть строение молекулы АТФ - одного из основных источников энергии.

АТФ - универсальный источник энергии

АТФ расшифровывается как аденозинтрифосфат, или аденозинтрифосфорная кислота. Вещество является одним из двух наиболее важных источников энергии в любой клетке. Строение АТФ и биологическая роль тесно связаны. Большинство биохимических реакций может протекать только при участии молекул вещества, особенно это касается Однако АТФ редко непосредственно участвует в реакции: для протекания любого процесса нужна энергия, заключенная именно в аденозинтрифосфата.

Строение молекул вещества таково, что образующиеся связи между фосфатными группами несут огромное количество энергии. Поэтому такие связи также называются макроэргическими, или макроэнергетическими (макро=много, большое количество). Термин впервые ввел ученый Ф. Липман, и он же предложил использовать значок ̴ для их обозначения.

Очень важно для клетки поддерживать постоянный уровень содержания аденозинтрифосфата. Особенно это характерно для клеток мышечной ткани и нервных волокон, потому что они наиболее энергозависимы и для выполнения своих функций нуждаются в высоком содержании аденозинтрифосфата.

Строение молекулы АТФ

Аденозинтрифосфат состоит из трех элементов: рибозы, аденина и остатков

Рибоза - углевод, который относится к группе пентоз. Это значит, что в составе рибозы 5 атомов углерода, которые заключены в цикл. Рибоза соединяется с аденином β-N-гликозидной связь на 1-ом атоме углерода. Также к пентозе присоединяются остатки фосфорной кислоты на 5-ом атоме углерода.

Аденин - азотистое основание. В зависимости от того, какое азотистое основание присоединяется к рибозе, выделяют также ГТФ (гуанозинтрифосфат), ТТФ (тимидинтрифосфат), ЦТФ (цитидинтрифосфат) и УТФ (уридинтрифосфат). Все эти вещества схожи по строению с аденозинтрифосфатом и выполняют примерно такие же функции, однако они встречаются в клетке намного реже.

Остатки фосфорной кислоты . К рибозе может присоединиться максимально три остатка фосфорной кислоты. Если их два или только один, то соответственно вещество называется АДФ (дифосфат) или АМФ (монофосфат). Именно между фосфорными остатками заключены макроэнергетические связи, после разрыва которых высвобождается от 40 до 60 кДж энергии. Если разрываются две связи, выделяется 80, реже - 120 кДж энергии. При разрыве связи между рибозой и фосфорным остатком выделяется всего лишь 13,8 кДж, поэтому в молекуле трифосфата только две макроэргические связи (Р ̴ Р ̴ Р), а в молекуле АДФ - одна (Р ̴ Р).

Вот каковы особенности строения АТФ. По причине того, что между остатками фосфорной кислоты образуется макроэнергетическая связь, строение и функции АТФ связаны между собой.

Строение АТФ и биологическая роль молекулы. Дополнительные функции аденозинтрифосфата

Кроме энергетической, АТФ может выполнять множество других функций в клетке. Наряду с другими нуклеотидтрифосфатами трифосфат участвует в построении нуклеиновый кислот. В этом случае АТФ, ГТФ, ТТФ, ЦТФ и УТФ являются поставщиками азотистых оснований. Это свойство используется в процессах и транскрипции.

Также АТФ необходим для работы ионных каналов. Например, Na-K канал выкачивает 3 молекулы натрия из клетки и вкачивает 2 молекулы калия в клетку. Такой ток ионов нужен для поддержания положительного заряда на наружной поверхности мембраны, и только с помощью аденозинтрифосфата канал может функционировать. То же касается протонных и кальциевых каналов.

АТФ является предшественником вторичного мессенжера цАМФ (циклический аденозинмонофосфат) - цАМФ не только передает сигнал, полученный рецепторами мембраны клетки, но и является аллостерическим эффектором. Аллостерические эффекторы - это вещества, которые ускоряют или замедляют ферментативные реакции. Так, циклический аденозинтрифосфат ингибирует синтез фермента, который катализирует расщепление лактозы в клетках бактерии.

Сама молекула аденозинтрифосфата также может быть аллостерическим эффектором. Причем в подобных процессах антагонистом АТФ выступает АДФ: если трифосфат ускоряет реакцию, то дифосфат затормаживает, и наоборот. Таковы функции и строение АТФ.

Как образуется АТФ в клетке

Функции и строение АТФ таковы, что молекулы вещества быстро используются и разрушаются. Поэтому синтез трифосфата - это важный процесс образования энергии в клетке.

Выделяют три наиболее важных способа синтеза аденозинтрифосфата:

1. Субстратное фосфорилирование.

2. Окислительное фосфорилирование.

3. Фотофосфорилирование.

Субстратное фосфорилирование основано на множественных реакциях, протекающих в цитоплазме клетки. Эти реакции получили название гликолиза - анаэробный этап В результате 1 цикла гликолиза из 1 молекулы глюкозы синтезируется две молекулы которые дальше используются для получения энергии, и также синтезируются два АТФ.

  • С 6 Н 12 О 6 + 2АДФ + 2Фн --> 2С 3 Н 4 O 3 + 2АТФ + 4Н.

Дыхание клетки

Окислительное фосфорилирование - это образование аденозинтрифосфата путем передачи электронов по электронно-транспортной цепи мембраны. В результате такой передачи формируется градиент протонов на одной из сторон мембраны и с помощью белкового интегрального комплекта АТФ-синтазы идет построение молекул. Процесс протекает на мембране митохондрий.

Последовательность стадий гликолиза и окислительного фосфорилирования в митохондриях составляет общий процесс под названием дыхание. После полного цикла из 1 молекулы глюкозы в клетке образуется 36 молекул АТФ.

Фотофосфорилирование

Процесс фотофосфорилирования - это то же окислительное фосфорилирование лишь с одним отличием: реакции фотофосфорилирования протекают в хлоропластах клетки под действием света. АТФ образуется во время световой стадии фотосинтеза - основного процесса получения энергии у зеленых растений, водорослей и некоторых бактерий.

В процессе фотосинтеза все по той же электронно-транспортной цепи проходят электроны, в результате чего формируется протонный градиент. Концентрация протонов на одной из сторон мембраны является источником синтеза АТФ. Сборка молекул осуществляется посредством фермента АТФ-синтазы.

В среднестатистической клетке содержится 0,04% аденозинтрифосфата от всей массы. Однако самое большое значение наблюдается в мышечных клетках: 0,2-0,5%.

В клетке около 1 млрд молекул АТФ.

Каждая молекула живет не больше 1 минуты.

Одна молекула аденозинтрифосфата обновляется в день 2000-3000 раз.

В сумме за сутки организм человека синтезирует 40 кг аденозинтрифосфата, и в каждый момент времени запас АТФ составляет 250 г.

Заключение

Строение АТФ и биологическая роль его молекул тесно связаны. Вещество играет ключевую роль в процессах жизнедеятельности, ведь в макроэргических связях между фосфатными остатками содержится огромное количество энергии. Аденозинтрифосфат выполняет множество функций в клетке, и поэтому важно поддерживать постоянную концентрацию вещества. Распад и синтез идут с большой скоростью, т. к. энергия связей постоянно используется в биохимических реакциях. Это незаменимое вещество любой клетки организма. Вот, пожалуй, и все, что можно сказать о том, какое строение имеет АТФ.

К нуклеиновым кислотам относят высокополимерные соединения, распадающиеся при гидролизе на пуриновые и пиримидиновые основания, пентозу и фосфорную кислоту. Нуклеиновые кислоты содержат углерод, водород, фосфор, кислород и азот. Различают два класса нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК) .

Строение и функции ДНК

ДНК — полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение — некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК — 2 нм, расстояние между соседними нуклеотидами — 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес — десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека — около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК — нуклеотид (дезоксирибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) — тимин, цитозин. Пуриновые основания (имеют два кольца) — аденин и гуанин.

Моносахарид нуклеотида ДНК представлен дезоксирибозой.

Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.

Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3"-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5"-углеродом (его называют 5"-концом), другой — 3"-углеродом (3"-концом).

Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина — всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином — три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин — тимин, гуанин — цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности . Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина — тимину («правило Чаргаффа» ), но объяснить этот факт он не смог.

Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.

Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3"-конца одной цепи находится 5"-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы — сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» — комплементарные азотистые основания.

Функция ДНК — хранение и передача наследственной информации.

Репликация (редупликация) ДНК

— процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферментов молекула ДНК раскручивается, и около каждой цепи, выступающей в роли матрицы, по принципам комплементарности и антипараллельности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая — вновь синтезированной. Такой способ синтеза называется полуконсервативным .

«Строительным материалом» и источником энергии для репликации являются дезоксирибонуклеозидтрифосфаты (АТФ, ТТФ, ГТФ, ЦТФ), содержащие три остатка фосфорной кислоты. При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых остатка фосфорной кислоты отщепляются, и освободившаяся энергия используется на образование фосфодиэфирной связи между нуклеотидами.

В репликации участвуют следующие ферменты:

  1. геликазы («расплетают» ДНК);
  2. дестабилизирующие белки;
  3. ДНК-топоизомеразы (разрезают ДНК);
  4. ДНК-полимеразы (подбирают дезоксирибонуклеозидтрифосфаты и комплементарно присоединяют их к матричной цепи ДНК);
  5. РНК-праймазы (образуют РНК-затравки, праймеры);
  6. ДНК-лигазы (сшивают фрагменты ДНК).

С помощью геликаз в определенных участках ДНК расплетается, одноцепочечные участки ДНК связываются дестабилизирующими белками, образуется репликационная вилка . При расхождении 10 пар нуклеотидов (один виток спирали) молекула ДНК должна совершить полный оборот вокруг своей оси. Чтобы предотвратить это вращение ДНК-топоизомераза разрезает одну цепь ДНК, что дает ей возможность вращаться вокруг второй цепи.

ДНК-полимераза может присоединять нуклеотид только к 3"-углероду дезоксирибозы предыдущего нуклеотида, поэтому данный фермент способен передвигаться по матричной ДНК только в одном направлении: от 3"-конца к 5"-концу этой матричной ДНК. Так как в материнской ДНК цепи антипараллельны, то на ее разных цепях сборка дочерних полинуклеотидных цепей происходит по-разному и в противоположных направлениях. На цепи 3"-5" синтез дочерней полинуклеотидной цепи идет без перерывов; эта дочерняя цепь будет называться лидирующей . На цепи 5"-3" — прерывисто, фрагментами (фрагменты Оказаки ), которые после завершения репликации ДНК-лигазами сшиваются в одну цепь; эта дочерняя цепь будет называться запаздывающей (отстающей ).

Особенностью ДНК-полимеразы является то, что она может начинать свою работу только с «затравки» (праймера ). Роль «затравок» выполняют короткие последовательности РНК, образуемые при участи фермента РНК-праймазы и спаренные с матричной ДНК. РНК-затравки после окончания сборки полинуклеотидных цепочек удаляются.

Репликация протекает сходно у прокариот и эукариот. Скорость синтеза ДНК у прокариот на порядок выше (1000 нуклеотидов в секунду), чем у эукариот (100 нуклеотидов в секунду). Репликация начинается одновременно в нескольких участках молекулы ДНК. Фрагмент ДНК от одной точки начала репликации до другой образует единицу репликации — репликон .

Репликация происходит перед делением клетки. Благодаря этой способности ДНК осуществляется передача наследственной информации от материнской клетки дочерним.

Репарация («ремонт»)

Репарацией называется процесс устранения повреждений нуклеотидной последовательности ДНК. Осуществляется особыми ферментными системами клетки (ферменты репарации ). В процессе восстановления структуры ДНК можно выделить следующие этапы: 1) ДНК-репарирующие нуклеазы распознают и удаляют поврежденный участок, в результате чего в цепи ДНК образуется брешь; 2) ДНК-полимераза заполняет эту брешь, копируя информацию со второй («хорошей») цепи; 3) ДНК-лигаза «сшивает» нуклеотиды, завершая репарацию.

Наиболее изучены три механизма репарации: 1) фоторепарация, 2) эксцизная, или дорепликативная, репарация, 3) пострепликативная репарация.

Изменения структуры ДНК происходят в клетке постоянно под действием реакционно-способных метаболитов, ультрафиолетового излучения, тяжелых металлов и их солей и др. Поэтому дефекты систем репарации повышают скорость мутационных процессов, являются причиной наследственных заболеваний (пигментная ксеродерма, прогерия и др.).

Строение и функции РНК

— полимер, мономерами которой являются рибонуклеотиды . В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК : 1) информационная (матричная) РНК — иРНК (мРНК), 2) транспортная РНК — тРНК, 3) рибосомная РНК — рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса — 25 000-30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке. Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3"-концу акцепторного стебля. Антикодон — три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000-5000 нуклеотидов; молекулярная масса — 1 000 000-1 500 000. На долю рРНК приходится 80-85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК : 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК : 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Строение и функции АТФ

Аденозинтрифосфорная кислота (АТФ) — универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2-0,5%) содержится в скелетных мышцах.

АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты — в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).

АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.

    Перейти к лекции №3 «Строение и функции белков. Ферменты»

    Перейти к лекции №5 «Клеточная теория. Типы клеточной организации»

Главная > Лекция

Лекция 4. Нуклеиновые кислоты. АТФ Нуклеиновые кислоты. К

Рис. . Строение ДНК

Нуклеиновым кислотам относят высокополимерные соединения, распадающиеся при гидролизе на пуриновые и пиримидиновые азотистые основания, пентозу и фосфорную кислоту. Нуклеиновые кислоты содержат углерод, водород, фосфор, кислород и азот. Различают два класса нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК). Строение и функции ДНК. Молекула ДНК – гетерополимер , мономерами которой являются дезоксирибонуклеотиды . Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж.Уотсоном и Ф.Криком (Нобелевская премия), для построения этой модели они использовали работы М.Уилкинса, Р.Франклин, Э.Чаргаффа. Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга, и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение – некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК – 2 нм, расстояние между соседними нуклеотидами – 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес – десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека – около 2м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию. Мономер ДНК – нуклеотид (дезоксирибонуклеотид) – состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (дезоксирибозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) – тимин, цитозин. Пуриновые основания (имеют два кольца) – аденин и гуанин. О

Рис. . Образование нуклеотида ДНК

Бразование нуклеотида происходит в два этапа. На первом этапе в результате реакции конденсации образуется нуклеозид – комплекс азотистого основания с сахаром. На втором этапе нуклеозид подвергается фосфорилированию. При этом между остатком сахара и фосфорной кислотой возникает фосфоэфирная связь. Таким образом, нуклеотид представляет собой нуклеозид, соединенный с остатком фосфорной кислоты (рис.). Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.

Азотистое
основание

Название
нуклеотида

Обозначение

Аденин

Адениловый

Гуанин

Гуаниловый

Тимин

Тимидиловый

Рис.. Образование динуклеотида

Цитозин

Цитидиловый

Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3"-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфодиэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5"-углеродом (его называют 5"-концом), другой –3"-углеродом (3"-концом). Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеодидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина – всегда цитозин. М

Рис. . ДНК

Ежду аденином и тимином возникают две водородные связи, а гуанином и цитозином – три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК располагаются строго упорядоченно (аденин – тимин, гуанин – цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности . Следует отметить, что Дж.Уотсон и Ф.Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э.Чаргаффа. Э

Рис. . Спаривание азотистых оснований.

Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина – тимину ("правило Чаргаффа"), но объяснить этот факт он не смог. Это положение получило название "правила Чаргаффа": А + ГА = Т; Г = Ц или --- = 1 Ц + ТИз принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.Цепи ДНК антипараллельны (разнонаправлены), то есть нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3"-конца одной цепи находится 5"-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы – сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» – комплементарные азотистые основания.Функция ДНК – хранение наследственной информации.Удвоение ДНК. Репликация ДНК – процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферментов молекула ДНК раскручивается и около каждой цепи, выступающей в роли матрицы, по принципам комплементарности и антипараллельности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая – вновь синтезированной, такой способ синтеза называется полуконсервативным .«Строительным материалом» и источником энергии для репликации являются дезоксирибонуклеозидтрифосфаты (АТФ, ТТФ, ГТФ, ЦТФ), содержащие три остатка фосфорной кислоты. При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых остатка фосфорной кислоты отщепляются, и освободившаяся энергия используется на образование фосфодиэфирной связи между нуклеотидами.В

Рис.. Репликация ДНК.

Репликации принимают участие следующие ферменты: 1) геликазы («расплетают» ДНК); 2) дестабилизирующие белки; 3) ДНК-топоизомеразы (разрезают ДНК); 4) ДНК-полимеразы (подбирают дезоксирибонуклеозидтрифосфаты и комплементарно присоединяют их к матричной цепи ДНК); 5) РНК-праймазы (образуют РНК-затравки, праймеры); 6) ДНК-лигазы (сшивают фрагменты ДНК). С помощью геликаз в определенных участках ДНК расплетается, одноцепочечные участки ДНК связываются дестабилизирующими белками, образуется репликационная вилка. При расхождении 10 пар нуклеотидов (один виток спирали) молекула ДНК должна совершить полный оборот вокруг своей оси. Чтобы предотвратить это вращение ДНК-топоизомераза разрезает одну цепь ДНК, это дает возможность вращаться ей вокруг второй цепи. ДНК-полимераза может присоединять нуклеотид только к 3"-углероду дезоксирибозы предыдущего нуклеотида, поэтому данный фермент способен передвигаться по матричной ДНК только в одном направлении: от 3"-конца к 5"-концу этой матричной ДНК. Так как в материнской ДНК цепи антипараллельны, то на ее разных цепях сборка дочерних полинуклеотидных цепей происходит по-разному и в противоположных направлениях.На цепи «3"-5"» синтез дочерней полинуклеотидной цепи идет без перерывов, эта дочерняя цепь будет называться лидирующей . На цепи «5"-3"» – прерывисто, фрагментами (фрагменты Оказаки ), которые после завершения репликации ДНК-лигазами сшиваются в одну цепь; эта дочерняя цепь будет называться запаздывающей (отстающей).Особенность ДНК-полимеразы – она может начинать свою работу только с «затравки» (праймера). Роль затравок выполняют короткие последовательности РНК, образуемые при участи фермента РНК-праймазы и спаренные с матричной ДНК. РНК-затравки после окончания сборки полинуклеотидных цепочек удаляются и заменяются на нуклеотиды ДНК другой ДНК-полимеразой.Репликация протекает сходно у прокариот и эукариот. Скорость синтеза ДНК у прокариот на порядок выше (1000 нуклеотидов в секунду), чем у эукариот (100 нуклеотидов в секунду). Репликация начинается одновременно в нескольких участках молекулы ДНК, имеющих определенную нуклеотидную последовательность и называемых ориджинами (англ. origin – начало). Фрагмент ДНК от одной точки начала репликации до другой образует единицу репликации – репликон .

Рис. . Ферменты репликации ДНК:

1 – геликазы; 2 – дестабилизирующие белки; 3 – лидирующая цепь ДНК; 4 - синтез фрагмента Оказаки; 5 – затравка заменяется нуклеотидами ДНК и фрагменты сшиваются лигазами; 6 – ДНК-полимераза; 7 – РНК-праймаза, синтезирует РНК-затравку; 8 – РНК-затравка; 9 – фрагмент Оказаки; 10 – лигаза, сшивающая фрагменты Оказаки; 11 – топоизомера, разрезающая одну из цепей ДНК.
Р

Рис. Репликоны ДНК

Епликация происходит перед делением клетки. Благодаря этой способности ДНК, осуществляется передача наследственной информации от материнской клетки дочерним. Репарация («ремонт») – процесс устранения повреждений нуклеотидной последовательности ДНК. Осуществляется особыми ферментными системами клетки (ферменты репарации). В процессе восстановления структуры ДНК можно выделить следующие этапы: 1) ДНК-репарирующие нуклеазы распознают и удаляют поврежденный участок, в результате чего в цепи ДНК образуется брешь; 2) ДНК-полимераза заполняет эту брешь, копируя информацию со второй ("хорошей") цепи; 3) ДНК-лигаза "сшивает" нуклеотиды, завершая репарацию.

Рис. . Строение РНК


Рибонуклеиновые кислоты РНК – молекулы гетерополимеры, мономерами которых являются рибонуклеотиды. В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение – некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой, но это внутри-, а не межцепочечные связи.Цепи РНК значительно короче цепей ДНК. Мономер РНК – нуклеотид (рибонуклеотид) – состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (рибозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов. Пиримидиновые основания РНК – урацил, цитозин , пуриновые основания – аденин и гуанин . В

Рис. . тРНК

Ыделяют три вида РНК: 1) информационная (матричная) РНК – иРНК (мРНК), 2) транспортная РНК – тРНК, 3) рибосомная РНК – рРНК . Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией . Транспортные РНК – содержат обычно от 76 до 85 нуклеотидов; молекулярная масса – 25 000-30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке. Отвечает тРНК за транспорт аминокислот к месту синтеза белка, к рибосомам. В клетке встречается около 30 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера.Молекула тРНК представляет собой неразветвленный полинуклеотид, первичная структура которого – последовательность нуклеотидов, вторичная – образование петель за счет спаривания комплементарных нуклеотидов, и третичная – образование компактной структуры за счет взаимодействия спирализованных участков вторичной структуры. У любой тРНК есть петля для контакта с рибосомой, антикодоновая петля с антикодоном, петля для контакта с ферментом, акцепторный стебель. Аминокислота присоединяется к 3"-концу акцепторного стебля. Антикодон – три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента «аминоацил-тРНК-синтетаза».Рибосомные РНК – содержат 3 000-5 000 нуклеотидов. На долю рРНК приходится 80-85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы – органеллы, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках.Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (до 30 000 нуклеотидов). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК – перенос генетической информации от ДНК к рибосомам; матрица для синтеза молекулы белка; определение аминокислотной последовательности первичной структуры белковой молекулы.АТФ, НАД + , НАДФ + , ФАД. Аденозинтрифосфорная кислота (АТФ) - универсальный источник и основной аккумулятор энергии в живых клетках . АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2-0,5%) содержится в скелетных мышцах. В клетке молекула АТФ расходуется в течение одной минуты после ее образования. У человека количество АТФ, равное массе тела, образуется и разрушается каждые 24 часа .АТФ – мононуклеотид, состоящий из остатков азотистого основания (аденина), рибозы и трех остатков фосфорной кислоты. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам .Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты – в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет около 30,6 кДж/моль. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж/моль. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).

Рис. Гидролиз АТФ


АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.Кроме АТФ есть и другие молекулы с макроэргическими связями – УТФ (уридинтрифосфорная кислота), ГТФ (гуанозинтрифосфорная кислота), ЦТФ (цитидинтрифосфорная кислота), энергия которых используются для биосинтеза белка (ГТФ), полисахаридов (УТФ), фосфолипидов (ЦТФ). Но все они образуются за счет энергии АТФ.Помимо мононуклеотидов, важную роль в реакциях обмена веществ играют динуклеотиды (НАД + , НАДФ + , ФАД), относящиеся к группе коферментов (органические молекулы, сохраняющие связь с ферментом только в ходе реакции). НАД + (никотинамидадениндинуклеотид), НАДФ + (никотинамидадениндинуклеотидфосфат) – динуклеотиды, имеющие в своем составе два азотистых основания – аденин и амид никотиновой кислоты – производное витамина РР), два остатка рибозы и два остатка фосфорной кислоты (рис. .). Если АТФ – универсальный источник энергии, то НАД + и НАДФ + – универсальные акцепторы, а их восстановленные формы – НАДН и НАДФН универсальные доноры восстановительных эквивалентов (двух электронов и одного протона). Входящий в состав остатка амида никотиновой кислоты атом азота четырехвалентен и несет положительный заряд (НАД + ). Это азотистое основание легко присоединяет два электрона и один протон (т.е. восстанавливается) в тех реакциях, в которых при участии ферментов дегидрогеназ от субстрата отрываются два атома водорода (второй протон уходит в раствор):Субстрат-Н 2 + НАД + субстрат + НАДН + Н +

Рис. . Структура молекулы динуклеотидов НАД + и НАДФ + .

А – присоединение фосфатной группы к остатку рибозы в молекуле НАД. Б – присоединение двух электронов и одного протона (аниона Н -) к НАД + .


В обратных реакциях ферменты, окисляя НАДН или НАДФН , восстанавливают субстраты, присоединяя к ним атомы водорода (второй протон приходит из раствора). ФАД – флавинадениндинуклеотид – производное витамина В 2 (рибофлавина) также является кофактором дегидрогеназ, но ФАД присоединяет два протона и два электрона, восстанавливаясь до ФАДН 2 .Ключевые термины и понятия 1. Нуклеотид ДНК. 2. Пуриновые и пиримидиновые азотистые основания. 3. Антипараллельность цепей нуклеотидов ДНК. 4. Комплементарность. 5. Полуконсервативный способ репликации ДНК. 6. Лидирующая и отстающая цепи нуклеотидов ДНК. 7. Репликон. 8. Репарация. 9. Нуклеотид РНК. 10. АТФ, АДФ, АМФ. 11. НАД + , НАДФ + . 12. ФАД.Основные вопросы для повторения

    Соединение нуклеотидов ДНК в одну цепь.

    Соединение полинуклеотидных цепочек ДНК друг с другом.

    Размеры ДНК: длина, диаметр, длина одного витка, расстояние между нуклеотидами.

    Правила Чаргаффа, значение работ Д.Уотсона и Ф.Крика.

    Репликация ДНК. Ферменты, обеспечивающие репликацию: геликазы, топоизомеразы, праймазы, ДНК-полимеразы; лигазы.

    Строение РНК.

    Виды РНК, их количество, размеры и функции.

    Характеристика АТФ.

    Характеристика НАД + , НАДФ + , ФАД.

Из курса биологии растений и животных вспомните, где в клетках хранится наследственная информация. Какие вещества отвечают за хранение и воспроизведение наследственной информации? Одинаковы ли эти вещества у растений и животных?

Нуклеиновые кислоты и нуклеотиды

Молекулы нуклеиновых кислот являются крупными органическими молекулами — биополимерами, мономерами которых являются нуклеотиды. Каждый нуклеотид состоит из трех компонентов — азотистого основания, моносахарида (рибозы или дезоксирибозы) и остатка ортофосфатной кислоты (рис. 8.1).

В состав нуклеиновых кислот входят пять видов азотистых оснований (рис. 8.2). Различают, собственно, пять видов нуклеотидов: тимидиловый (основание — тимин), цитидиловый (основание — цитозин), уридиловый (основание — урацил), адениловый (основание — аденин), гуаниловый (основание — гуанин).

В клетках живых организмов отдельные нуклеотиды используются также в различных процессах обмена веществ как самостоятельные соединения.

При образовании молекул нуклеиновой кислоты между остатком ортофосфатной кислоты одного нуклеотида и моносахаридом другого

образуется прочная ковалентная связь. Поэтому нуклеиновые кислоты, образующиеся таким образом, имеют вид цепи, в которой нуклеотиды последовательно расположены друг за другом. Их число в одной молекуле биополимера может достигать нескольких миллионов.

ДНК и РНК

В клетках живых организмов присутствует два типа нуклеиновых кислот — РНК (рибонуклеиновая кислота) и ДНК (дезоксирибонуклеиновая кислота). Они различаются между собой по составу и особенностями строения.

Главной функцией ДНК и РНК является хранение и воспроизведение наследственной информации, чему способствует строение их молекул.

РНК хранит наследственную информацию менее надежно, чем ДНК, поэтому данный способ хранения использует только часть вирусов.

Строение молекул нуклеиновых кислот

В состав нуклеотидов ДНК входят моносахарид дезоксирибоза и четыре азотистых основания — аденин, тимин, цитозин и гуанин. А сами молекулы ДНК обычно состоят из двух нуклеотидных цепочек, которые соединены между собой водородными связями (рис. 8.3).

В нуклеотидах РНК вместо дезоксирибозы содержится моносахарид рибоза, а вместо тимина — урацил. Молекула РНК обычно состоит из одной нуклеотидной цепочки, различные фрагменты которой образуют между собой водородные связи. Между гуанином и цитозином образуются три такие связи, а между аденином и тимином или аденином и урацилом — две.

Молекула ДНК состоит из двух нуклеотидных цепочек, соединенных по принципу комплементарности (дополнения): напротив каждого нуклеотида одной цепи размещается тот нуклеотид второй цепи, который ему соответствует. Так, напротив аденилового нуклеотида размещается тимидиловый, а напротив цитидилового — гуаниловый (рис. 8.4). Поэтому в молекулах ДНК количество адениловых нуклеотидов всегда равно количеству тимидиловых нуклеотидов, а количество гуаниловых — количеству цитидиловых.

АТФ и ее роль в жизнедеятельности клеток

В жизнедеятельности клетки активное участие принимают не только РНК и ДНК, но и отдельные нуклеотиды. Особенно важными являются соединения нуклеотидов с остатками ортофосфатной кислоты. Таких остатков к нуклеотиду может присоединяться от одного до трех. Соответственно, и называют их по числу этих остатков: АТФ — аденозинтриортофосфат (аденозинтриортофосфорная кислота), ГТФ — гуанозинтриортофосфат, АДФ — аденозиндиортофосфат, АМФ — аденозинмоноортофосфат. все нуклеотиды, которые входят в состав нуклеиновых кислот, являются монофосфатами. Три- и дифосфаты также играют важную роль в биохимических процессах клеток.

Наиболее распространенным в клетках живых организмов является АТФ. Он играет роль универсального источника энергии для биохимических реакций, а также участвует в процессах роста, движения и размножения клеток. Большое количество молекул АТФ образуется в процессах клеточного дыхания и фотосинтеза.

Преобразование энергии и реакции синтеза в биологических системах

АТФ обеспечивает энергией большинство процессов, происходящих в клетках. в первую очередь, это процессы синтеза органических веществ, которые осуществляются с помощью ферментов.

Для того чтобы ферменты могли осуществить биохимическую реакцию, им в большинстве случаев требуется энергия.

Молекулы АТФ при взаимодействии с ферментами распадаются на две молекулы — ортофосфатную кислоту и АДФ. При этом выделяется энергия:

Эту энергию и используют ферменты для работы. А почему именно АТФ? Потому что связь остатков ортофосфатной кислоты в этой молекуле является не обычной, а макроэргической (высокоэнергетической) (рис. 8.5). Для образования этой связи требуется много энергии, но и во время ее разрушения энергия выделяется в больших количествах.


Когда молекулы углеводов, белков, липидов в клетках расщепляются, то происходит выделение энергии. Эту энергию клетка запасает. Для этого к нуклеотидам моноортофосфатам (например, АМФ) присоединяется один или два остатка ортофосфатной кислоты и образуются молекулы ди- или триортофосфатов (соответственно, АДФ или АТФ). Образующиеся связи являются макроэргическими. Таким образом,

АДФ содержит одну макроэргическую связь, а АТФ — две. во время синтеза новых органических соединений макроэргические связи разрушаются и обеспечивают соответствующие процессы энергией.

Все клеточные формы жизни на нашей планете содержат в своих клетках и РНК, и ДНК. А вот в вирусах присутствует только один тип нуклеиновой кислоты. в их вирионах под белковой оболочкой содержится или РНК, или ДНК. Только когда вирус попадает в клетку-хозяина, он обычно начинает синтезировать и ДНК, и РНК.

Нуклеиновые кислоты являются биополимерами, которые представлены в живых организмах в виде ДНК и РНК. Их мономерами являются нуклеотиды. ДНК обычно имеет форму двойной спирали, состоящей из двух цепей. РНК чаще всего имеет вид одинарной цепи. Основной функцией нуклеиновых кислот является хранение и воспроизводство генетической информации. Нуклеотиды также участвуют в биохимических процессах клетки, а АТФ играет роль универсального источника энергии для биохимических реакций.

Проверьте свои знания

1. Чем ДНК отличается от РНК? 2. Зачем живым организмам нужны нуклеиновые кислоты? 3. Какие функции выполняет в клетках АТФ? 4. Достройте вторую цепочку ДНК по принципу комплементарности, если первая цепочка такая: АГГТТАТАЦГЦЦТАГААТЦГГГАА. 5*. ДНК не способна быть катализатором биохимических реакций. А вот некоторые молекулы РНК (их называют рибозимами) могут быть катализаторами. С какими особенностями строения этих молекул это может быть связано? 6*. Почему макроэргические связи удобны для использования в биохимических процессах клетки?

Обобщающие задания к теме «Химический состав клетки и биологические молекулы»

В заданиях 1-9 выберите один правильный ответ.

1 Изображенная на рис. 1 структура выполняет функцию:

а) хранит и воспроизводит наследственную информацию

б) транспортирует вещества

В) создает запас питательных веществ

г) катализирует реакции

2) Из тех же мономеров, что и вещество на рис. 1, состоит:

а) коллаген б) крахмал в) РНК г) эстроген

3) вещество на рис. 1 может накапливаться:

а) на внешней мембране митохондрий

б) в клеточной стенке дрожжей

В) в клетках печени человека

г) в хлоропластах кукурузы

4 Изображенная на рис. 2 структура является компонентом:

а) клеточной стенки растений

б) белков

г) внутреннего слоя клеточной мембраны

5) Цифрой 3 на рис. 2 обозначили:

а) карбонильную группу в) карбоксильную группу

б) гидроксильную группу г) радикал

6) Аминогруппа на рис. 2 обозначена цифрой:

а) 1 б) 2 в) 3 г) 4

7) Структура на рис. 2 является мономером:

а) нуклеиновой кислоты в) липида

б) белка г) полисахарида

8) Моносахарид на рис. 3 обозначен цифрой:

а) 1 б) 2 в) 3 г) 4

9) Структура на рис. 3 является мономером:

а) нуклеиновой кислоты в) белка

б) липида г) полисахарида

10 Напишите названия групп органических веществ, к которым относятся молекулы, изображенные на рисунках:

11 Рассмотрите структурную формулу молекулы, изображенной на рисунке. Объясните, каким образом строение этой молекулы позволяет ей эффективно выполнять свои функции.

12 Достройте комплементарную цепь ДНК: АТТГАЦЦЦГАТТАГЦ.

13 Установите соответствие между группами органических веществ и веществами, которые к ним относятся.

Группы вещества

1 белки а) прогестерон

2 углеводы б) гемоглобин

3 липиды в) крахмал

г) инсулин

д) фруктоза

е) тестостерон

Проверьте свои знания по теме «Химический состав клетки и биологические молекулы».


Мини-справочник

Сведения об органических веществах

Структура органической молекулы на примере аланина

Типы связей в молекуле белка

Ковалентные связи

Образуются между атомами элементов в молекуле вещества за счет общих электронных пар. в молекулах белков имеются пептидные и дисульфидные связи. Обеспечивают прочное химическое взаимодействие.

Пептидная связь

Пептидные связи возникают между карбоксильной группой (-COOH) одной аминокислоты и аминогруппой (-NH 2) другой аминокислоты.

Дисульфидная связь

Дисульфидная связь может возникать между различными участками одной и той же полипептидной цепи, при этом она удерживает эту цепь в изогнутом состоянии. Если дисульфидная связь образуется между двумя полипептидами, то она объединяет их в одну молекулу.

Нековалентные связи

В молекулах белков имеются водородные, ионные связи и гидрофобные взаимодействия. Обеспечивают слабые химические взаимодействия.

Водородная связь

Образуется между положительно заряженными атомами H одной функциональной группы и отрицательно заряженным атомом O или N, имеющим неподеленную электронную пару, другой функциональной группы.

Ионная связь

Образуется между положительно и отрицательно заряженными функциональными группами (дополнительными карбоксильными и аминогруппами), которые находятся в радикалах лизина, аргинина, гистидина, аспарагиновой и глутаминовой кислот.

Гидрофобное

Взаимодействие

Образуется между радикалами гидрофобных аминокислот.

Это материал учебника

К нуклеиновым кислотам относят высокополимерные соединения, распадающиеся при гидролизе на пуриновые и пиримидиновые основания, пентозу и фосфорную кислоту. Нуклеиновые кислоты содержат углерод, водород, фосфор, кислород и азот. Различают два класса нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК) .

Строение и функции ДНК

ДНК — полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение — некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК — 2 нм, расстояние между соседними нуклеотидами — 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес — десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека — около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК — нуклеотид (дезоксирибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) — тимин, цитозин.Пуриновые основания (имеют два кольца) — аденин и гуанин.

Моносахарид нуклеотида ДНК представлен дезоксирибозой.

Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.

Азотистое основание Название нуклеотида Обозначение
Аденин Адениловый А (A)
Гуанин Гуаниловый Г (G)
Тимин Тимидиловый Т (T)
Цитозин Цитидиловый Ц (C)

Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3"-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5"-углеродом (его называют 5"-концом), другой — 3"-углеродом (3"-концом).

Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина — всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином — три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин — тимин, гуанин — цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности . Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина — тимину («правило Чаргаффа» ), но объяснить этот факт он не смог.

Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.

Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3"-конца одной цепи находится 5"-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы — сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» — комплементарные азотистые основания.

Функция ДНК — хранение и передача наследственной информации.

Репликация (редупликация) ДНК

— процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферментов молекула ДНК раскручивается, и около каждой цепи, выступающей в роли матрицы, по принципам комплементарности и антипараллельности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая — вновь синтезированной. Такой способ синтеза называетсяполуконсервативным .

«Строительным материалом» и источником энергии для репликации являются дезоксирибонуклеозидтрифосфаты (АТФ, ТТФ, ГТФ, ЦТФ), содержащие три остатка фосфорной кислоты. При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых остатка фосфорной кислоты отщепляются, и освободившаяся энергия используется на образование фосфодиэфирной связи между нуклеотидами.


В репликации участвуют следующие ферменты:

  1. геликазы («расплетают» ДНК);
  2. дестабилизирующие белки;
  3. ДНК-топоизомеразы (разрезают ДНК);
  4. ДНК-полимеразы (подбирают дезоксирибонуклеозидтрифосфаты и комплементарно присоединяют их к матричной цепи ДНК);
  5. РНК-праймазы (образуют РНК-затравки, праймеры);
  6. ДНК-лигазы (сшивают фрагменты ДНК).

С помощью геликаз в определенных участках ДНК расплетается, одноцепочечные участки ДНК связываются дестабилизирующими белками, образуется репликационная вилка . При расхождении 10 пар нуклеотидов (один виток спирали) молекула ДНК должна совершить полный оборот вокруг своей оси. Чтобы предотвратить это вращение ДНК-топоизомераза разрезает одну цепь ДНК, что дает ей возможность вращаться вокруг второй цепи.

ДНК-полимераза может присоединять нуклеотид только к 3"-углероду дезоксирибозы предыдущего нуклеотида, поэтому данный фермент способен передвигаться по матричной ДНК только в одном направлении: от 3"-конца к 5"-концу этой матричной ДНК. Так как в материнской ДНК цепи антипараллельны, то на ее разных цепях сборка дочерних полинуклеотидных цепей происходит по-разному и в противоположных направлениях. На цепи 3"–5" синтез дочерней полинуклеотидной цепи идет без перерывов; эта дочерняя цепь будет называтьсялидирующей . На цепи 5"–3" — прерывисто, фрагментами (фрагменты Оказаки ), которые после завершения репликации ДНК-лигазами сшиваются в одну цепь; эта дочерняя цепь будет называться запаздывающей (отстающей ).

Особенностью ДНК-полимеразы является то, что она может начинать свою работу только с «затравки» (праймера ). Роль «затравок» выполняют короткие последовательности РНК, образуемые при участи фермента РНК-праймазы и спаренные с матричной ДНК. РНК-затравки после окончания сборки полинуклеотидных цепочек удаляются.

Репликация протекает сходно у прокариот и эукариот. Скорость синтеза ДНК у прокариот на порядок выше (1000 нуклеотидов в секунду), чем у эукариот (100 нуклеотидов в секунду). Репликация начинается одновременно в нескольких участках молекулы ДНК. Фрагмент ДНК от одной точки начала репликации до другой образует единицу репликации — репликон .

Репликация происходит перед делением клетки. Благодаря этой способности ДНК осуществляется передача наследственной информации от материнской клетки дочерним.

Репарация («ремонт»)

Репарацией называется процесс устранения повреждений нуклеотидной последовательности ДНК. Осуществляется особыми ферментными системами клетки (ферменты репарации ). В процессе восстановления структуры ДНК можно выделить следующие этапы: 1) ДНК-репарирующие нуклеазы распознают и удаляют поврежденный участок, в результате чего в цепи ДНК образуется брешь; 2) ДНК-полимераза заполняет эту брешь, копируя информацию со второй («хорошей») цепи; 3) ДНК-лигаза «сшивает» нуклеотиды, завершая репарацию.

Наиболее изучены три механизма репарации: 1) фоторепарация, 2) эксцизная, или дорепликативная, репарация, 3) пострепликативная репарация.

Изменения структуры ДНК происходят в клетке постоянно под действием реакционно-способных метаболитов, ультрафиолетового излучения, тяжелых металлов и их солей и др. Поэтому дефекты систем репарации повышают скорость мутационных процессов, являются причиной наследственных заболеваний (пигментная ксеродерма, прогерия и др.).

Строение и функции РНК


— полимер, мономерами которой являются рибонуклеотиды . В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК : 1) информационная (матричная) РНК — иРНК (мРНК), 2) транспортная РНК — тРНК, 3) рибосомная РНК — рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.



Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса — 25 000–30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке.Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3"-концу акцепторного стебля. Антикодон — три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000–5000 нуклеотидов; молекулярная масса — 1 000 000–1 500 000. На долю рРНК приходится 80–85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК : 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке.Функции иРНК : 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Строение и функции АТФ

Аденозинтрифосфорная кислота (АТФ) — универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2–0,5%) содержится в скелетных мышцах.

АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты — в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).

АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.