Как и когда образовалась вселенная. Как и когда образовалась вселенная Как зародилась вселенная

Как мы любим, вот так вот, не о чем не думая просто смотреть на темное небо, бесконечно-усеянное звездами и мечтать. А задумывались ли вы когда нибудь что-же это там над нами, что это за мир, как он устроен, всегда ли существовал или нет, откуда образовались звезды, планеты, почему именно так, а не по-другому, эти вопросы можно перечислять до бесконечности. Человек на протяжении всего своего существования пытался и пытается ответить на эти вопросы и наверное пройдет сотни, а быть может и тысячи лет, и все равно не сможет дать полного ответа на них.

Тысячелетиями наблюдая за звездами человек понял, что от вечера к вечеру они всегда остаются одними и теми же и не меняют взаимного расположения. Но тем не менее, так было не всегда, например 40 тыс. лет назад звезды имели не такой вид, как сейчас. Большая Медведица была похожа на Большую Колотушку, не было привычной фигуры подпоясанного Ориона. Это все объясняется тем, что ничего не стоит на месте, а находится в постоянном движении. Луна вращается вокруг , Земля в свою очередь проходит круговой цикл вокруг , Солнце, а вместе с ней и вся , вращаются вокруг центра Галактики, та, в свою очередь, движется вокруг центра Вселенной. Кто знает, быть может наша Вселенная тоже двигается относительно другой только с большими размерами.

Как образовалась Вселенная

В 1922 году российский ученый, астроном Александр Александрович Фридман выдвинул общую теорию происхождения нашей Вселенной , которая впоследствии была подтверждена американским астрономом Эдвином Хабблом. Эта теория получила общепринятое название, как теория "Большого взрыва " . На момент возникновения Вселенной , а это примерно 12-15 млрд лет назад, ее размеры были настолько малы, насколько это вообще возможно, формально можно предположить, что Вселенная была стянута в одну точку и имела при этом бесконечно огромную плотность равной 10 90 кг/см³. Это значит, что 1 кубический сантиметр вещества из которой состояла Вселенная в момент взрыва, весил 10 в 90 степени килограммов. Приблизительно через 10 −35 с. после наступления так называемой Планковской эпохи (когда вещество было сжато до максимально возможного предела и имела при этом температуру приблизительно 10 32 K) произошел взрыв, в следствии чего начался процесс мгновенного экспоненциального расширения Вселенной, которое происходит и в настоящий момент. В результате взрыва, из постепенно расширявшегося во все стороны супергорячего облака субатомных частиц, постепенно образовались атомы, вещества, планеты, звезды, галактики и наконец жизнь.

Большой взрыв - это высвобождение во все стороны колоссального количества энергии с постепенным падением температуры, а так как Вселенная расширяется постоянно, то она соответственно непрерывно охлаждается. Сам процесс расширения Вселенной в космологии и астрономии получил распространенное название как "Космическая инфляция". Вскоре после падения температуры до определенных значений, в космосе появились первые элементарные частицы, такие как протоны и нейтроны. Когда температура космоса понизилась до нескольких тысяч градусов бывшие элементарные частицы стали электронами и начали объединятся с протонами и ядрами гелия. Именно на этой стадии во Вселенной началось образование атомов, преимущественно водорода и гелия.








С каждой секундой наша Вселенная увеличивается в объеме, это подтверждается общей теорией Расширения Вселенной. Причем увеличивается (расширяется) только так как оно не связано силой Всемирного тяготения. К примеру наша не может расширятся из-за сил гравитации, которыми обладают любые тела, имеющие массу. Так как Солнце тяжелее любой планеты в нашей системе, то за счет сил гравитации, оно поддерживает их на определенном расстоянии, которое может изменится только при изменении массы самого . Если бы не существовало сил гравитации, то наша планета, как и любая другая, с каждой минутой отдалялась бы от все дальше и дальше. И естественно никакая жизнь не могла бы зародится ни в каком месте Вселенной. Т. е гравитация, как бы связывает все тела в единую систему, в единый объект и поэтому расширение может происходить только там, где нет небесных тел - в пространстве между галактиками. Сам процесс Расширения Вселенной правильней будет назвать "разбегание" галактик. Как известно расстояние между галактиками очень велико и может достигать до нескольких миллионов, а то и сотней миллионов световых лет (один световой год - это расстояние, которое пройдет луч света за один земной год (365 дней), численно он равен 9 460 800 000 000 километров, или 9,46 триллионов километров, или 9,46 тысяч миллиардов километров). А если учесть факт Расширения Вселенной, то эта цифра постоянно растет.

Расчётная структура Вселенной по данным Millennium simulation. Отмеченное белой

линией расстояние составляет около 141 млн световых лет. Жёлтым обозначена

материя, фиолетовым — наблюдаемая лишь косвенно тёмная материя.

Каждая жёлтая точка представляет собой одну галактику.


Что же будет дальше с нашей Вселенной , она так и будет всегда увеличиваться? В начале 20-х годов было установлено, что дальнейшая судьба Вселенной зависит только от средней плотности, заполняющего его вещества. Если эта плотность равна или ниже некоторой критической плотности , то расширение будет продолжаться вечно. Если же плотность окажется выше критической, то наступит обратная фаза - сжатие. Вселенная сожмется до точки и затем опять произойдет Большой Взрыв и процесс развития наступит заново. Не исключено, что этот цикл (расширение-сжатие) когда то - уже происходил с нашей Вселенной и произойдет в будущем. Чему же равна эта таинственная критическая плотность мира? Ее значение определяется только современным значением постоянной Хаббла и составляет ничтожную величину - около 10 -29 г/см³ или 10 -5 атомных единиц массы в каждом кубическом сантиметре. При такой плотности 1 грамм вещества содержится в кубе со стороной около 40 тысяч километров.
Человечество всегда удивлялось и восхищалось размерами нашего мира, нашей Вселенной, но такая ли она на самом деле, какой ее представлял человек или во много раз больше. А может Вселенная бесконечная, а если нет, то где все же ее граница? Хотя объемы космоса и колоссальны, все же они имеют определнные пределы. По наблюдениям Эдвина Хабла был установлен приблизительный размер Вселенной, названный в честь него - хабловским радиусом, составляющий около 13 млрд световых лет (12,3*10 22 километров). На самом современном космическом корабле, чтобы преодолеть такое расстояние человеку понадобитя примерно 354 триллионов лет или 354 тысячи миллиардов лет.
До сих пор остается не решенным важнейший вопрос: что существовало до начала расширения Вселенной? Такая же Вселенная, как и наша, только не расширяющаяся, а сжимающаяся? Или совсем незнакомый нам мир с абсолютно иными свойствами пространства и времени. Возможно это был мир, который подчинялся совсем другим, неизвестным нам законам природы. Эти вопросы настолько сложны, что выходят за грани человеческого понимания.

Сегодня мы говорим об этой, ну как ее, Вселенной. Так уж получилось, что однажды она откуда-то появилась, и вот все мы здесь. Кто-то читает эту статью, кто-то готовится к экзамену, проклиная все на свете... Самолеты летают, поезда ходят, планеты крутятся, где-то всегда что-то происходит. Людям всегда было интересно знать один сложный ответ на простой вопрос. Как же все начиналось и как это мы докатились до того, что есть? Иными словами - как родилась Вселенная?

Итак, вот они - разные версии и модели происхождения Вселенной.

Креационизм: все создал Господь Бог


Среди всех теорий о происхождении Вселенной эта появилась самой первой. Очень хорошая и удобная версия, которая, пожалуй, будет иметь актуальность всегда. Кстати, многие ученые физики, несмотря на то что наука и религия часто представляются понятиями противоположными, верили в Бога. Например, Альберт Эйнштейн говорил:

«Каждый серьезный естествоиспытатель должен быть каким-то образом человеком религиозным. Иначе он не способен себе представить, что те невероятно тонкие взаимозависимости, которые он наблюдает, выдуманы не им. В бесконечном универсуме обнаруживается деятельность бесконечно совершенного Разума. Обычное представление обо мне, как об атеисте – большое заблуждение. Если это представление почерпнуто из моих научных работ, могу сказать, что мои научные работы не поняты»


Теория Большого Взрыва

Пожалуй, самая распространенная и наиболее признанная модель происхождения нашей Вселенной. Во всяком случае, о ней слышал практически каждый. Что говорит нам Большой Взрыв? Однажды, лет эдак 14 миллиардов назад, пространства и времени не было, а вся масса вселенной была сосредоточена в крохотной точке с невероятной плотностью – в сингулярности. В один прекрасный момент (если так можно сказать -времени-то не было) сингулярность не выдержала из-за возникшей в ней неоднородности, произошел так называемый Большой Взрыв. И с тех пор Вселенная постоянно расширяется и остывает.


Модель расширяющейся Вселенной

Сейчас доподлинно известно, что Галактики и иные космические объекты удаляются друг от друга, а значит, Вселенная расширяется. В 20-м веке существовало множество альтернативных теорий происхождения Вселенной. Одной из самых популярных была модель стационарной Вселенной, за которую ратовал сам Эйнштейн. Согласно этой модели, Вселенная не расширяется, а находиться в стационарном состоянии благодаря какой-то удерживающей ее силе.


Красное смещение – это наблюдаемое для далеких источников понижение частот излучения, которое объясняется отдалением источников (галактик, квазаров) друг от друга. Данный факт свидетельствует о том, что Вселенная расширяется.

Реликтовое излучение – это как бы отголоски большого взрыва. Ранее Вселенная представляла собой горячую плазму, которая постепенно остывала. Еще с тех далеких времен во Вселенной остались так называемые блуждающие фотоны, которые образуют фоновое космическое излучение. Ранее при более высоких температурах Вселенной данное излучение было гораздо мощнее. Сейчас же его спектр соответствует спектру излучения абсолютно твердого тела с температурой всего 2,7 Кельвин.

Теория струн

Современное изучение эволюции Вселенной невозможно без согласования его с квантовой теорией. Так, например, в рамках теории струн (теория струн основана на гипотезе о том, что все элементарные частицы и их фундаментальные взаимодействия возникают в результате колебаний и взаимодействий ультрамикроскопических квантовых струн ), предполагается модель множественной Вселенной. Конечно, там тоже был Большой Взрыв, но он произошел не просто так и из ничего, а, возможно, в результате столкновения нашей Вселенной с какой-то другой, еще одной Вселенной.

Собственно, кроме Большого Взрыва, породившего нашу Вселенную, во множественной Вселенной происходит множество других Больших Взрывов, порождающих множество других Вселенных, развивающихся по своим, отличным от известных нам законам физики.


Скорее всего мы никогда не узнаем наверняка, как, откуда и почему появилась Вселенная. Тем не менее, размышлять об этом можно очень долго и интересно, а чтобы у Вас было достаточно пищи для размышлений, предлагаем посмотреть увлекательное видео на тему современных теорий происхождения Вселенной.

Проблемы развития Вселенной слишком масштабны. Настолько масштабны, что, по сути, даже не являются проблемами. Предоставим физикам-теоретикам ломать над ними головы и перенесемся из глубин Вселенной на Землю, где нас, возможно, ждет неначатый курсач или диплом. Если это так, мы предлагаем свое решение этого вопроса. Закажите отличную работу у авторов Zaochnik , вздохните спокойно, и будьте в гармонии с собой и Вселенной.

Звездное небо издавна будоражило человеческое воображение. Наши далекие предки пытались понять, что за странные мерцающие точки висят у них над головами. Сколько их, откуда они взялись, влияют ли на земные события? Человек с глубокой древности пытался осмыслить, как устроена Вселенная, в которой он обитает.

О том, как древние люди представляли себе Вселенную, сегодня мы можем узнать разве что из сказок и легенд, дошедших до нас. Понадобились века и тысячелетия, чтобы возникла и окрепла наука о Вселенной, изучающая ее свойства и этапы развития, – космология. Краеугольными камнями данной дисциплины являются астрономия, математика и физика.

Сегодня мы гораздо лучше понимаем устройство Вселенной, но каждое полученное знание лишь рождает новые вопросы. Исследование атомных частиц в коллайдере, наблюдение за жизнью в дикой природе, высадку межпланетного зонда на астероиде также можно назвать изучением Вселенной, ибо данные объекты входят в ее состав. Человек тоже часть нашей прекрасной звездной Вселенной. Изучая Солнечную систему или далекие галактики, мы больше узнаем о самих себе.

Космология и объекты ее изучения

Само понятие Вселенная не имеет четкого определения в астрономии. В разные исторические периоды и у различных народов оно имело целый ряд синонимов, таких как «космос», «мир», «мироздание», «универсум» или «небесная сфера». Нередко, говоря о процессах, происходящих в глубинах Вселенной, применяют термин «макрокосмос», противоположностью которому является «микрокосмос» мира атомов и элементарных частиц.

На нелегком пути познания космология нередко пересекается с философией и даже теологией, и в этом нет ничего удивительного. Наука об устройстве Вселенной пытается объяснить, когда и как возникло мироздание, разгадать тайну зарождения материи, понять место Земли и человечества в бесконечности космоса.

У современной космологии две наибольшие проблемы. Во-первых, объект ее изучения – Вселенная – уникален, что делает невозможным применение статистических схем и методов. Говоря кратко, мы не знаем о существовании других Вселенных, их свойствах, структуре, поэтому не можем сравнивать. Во-вторых, длительность астрономических процессов не дает возможность проводить прямые наблюдения.

Космология исходит из постулата, что свойства и строение Вселенной одинаковы для любого наблюдателя, за исключением редких космических феноменов. Это означает, что вещество во Вселенной распределено однородно, и она имеет одинаковые свойства во всех направлениях. Из этого следует, что физические законы, работающие в части Вселенной, вполне можно экстраполировать на всю Метагалактику.

Теоретическая космология разрабатывает новые модели, которые затем подтверждаются или опровергаются наблюдениями. Например, была доказана теория возникновения Вселенной в результате взрыва.

Возраст, размеры и состав

Масштабы Вселенной потрясают: они намного больше, чем мы могли представить двадцать или тридцать лет назад. Ученые уже обнаружили около пятисот миллиардов галактик, и число постоянно увеличивается. Каждая из них вращается вокруг собственной оси и удаляется от других на огромной скорости из-за расширения Вселенной.

Квазар 3C 345 – один из самых ярких объектов во Вселенной – расположен от нас на удалении в пять миллиардов световых лет. Человеческий разум даже представить не может подобные расстояния. Космическому кораблю, движущемуся со световой скоростью, понадобится тысяча лет, чтобы облететь наш Млечный путь. До галактики Андромеды ему пришлось бы добираться 2,5 тыс. лет. А ведь это ближайшая соседка.

Говоря о размерах Вселенной, мы имеем ввиду ее видимую часть, называемую еще Метагалактикой. Чем больше результатов наблюдений мы получаем, тем дальше раздвигаются границы Вселенной. Причем происходит это одновременно по всем направлениям, что доказывает ее сферическую форму.

Наш мир появился около 13,8 млрд лет назад в результате Большого взрыва – события, породившего звезды, планеты, галактики и другие объекты. Эта цифра является реальным возрастом Вселенной.

Исходя из скорости света можно предположить, что ее размеры также составляют 13,8 млрд световых лет. Однако на самом деле они больше, ибо с момента рождения Вселенная непрерывно расширяется. Часть движется со сверхсветовой скоростью, из-за чего значительное количество объектов во Вселенной останутся невидимыми навеки. Данный предел называются сферой или горизонтом Хаббла.

Диаметр Метагалактики составляет 93 млрд световых лет. Мы не знаем, что находится за пределами известной Вселенной. Может быть, существуют и более далекие объекты, недоступные сегодня для астрономических наблюдений. Значительная часть ученых верит в бесконечность Вселенной.

Возраст Вселенной неоднократно проверялся с использованием различных методик и научных инструментов. Последний раз его подтвердили с помощью орбитального телескопа «Планк». Имеющиеся данные полностью соответствуют современным моделям расширения Вселенной.

Из чего состоит Вселенная? Водород – самый распространенный элемент во Вселенной (75%), на втором месте находится гелий (23%), на остальные элементы приходятся ничтожные 2% от общего количества вещества. Средняя плотность - 10-29 г/см3, значительная часть которой приходится на так называемую темную энергию и материю. Зловещие названия не говорят об их ущербности, просто темная материя, в отличие от обычной, не взаимодействует с электромагнитным излучением. Соответственно, мы не можем наблюдать ее и делаем свои заключения только по косвенным признакам.

Исходя из вышеуказанной плотности, масса Вселенной составляет примерно 6*1051 кг. Следует понимать, что в эту цифру не входит темная масса.

Структура мироздания: от атомов до галактических скоплений

Космос – это не просто огромная пустота, в которой равномерно рассеяны звезды, планеты и галактики. Структура Вселенной довольно сложна и имеет несколько уровней организации, которые мы можем классифицировать в соответствии с масштабом объектов:

  1. Астрономические тела во Вселенной обычно группируются в системы. Звезды нередко образуют пары или входят в состав скоплений, которые содержат десятки, а то и сотни светил. В этом отношении наше Солнце довольно нетипично, так как оно не имеет «двойника»;
  2. Следующей ступенью организации являются галактики. Они могут быть спиральными, эллиптическими, линзовидными, неправильными. Ученые пока не до конца понимают, почему галактики обладают разной формой. На этом уровне мы обнаруживаем такие чудеса Вселенной, как черные дыры, темную материю, межзвездный газ, двойные звезды. Кроме звезд, в их состав входит пыль, газ, электромагнитное излучение. В известной Вселенной обнаружено несколько сотен миллиардов галактик. Они нередко сталкиваются друг с другом. Это непохоже на автомобильную аварию: звезды просто перемешиваются и меняют свои орбиты. Такие процессы занимают миллионы лет и приводят к образованию новых звездных скоплений;
  3. Несколько галактик образуют Местную группу. В нашу, кроме Млечного пути , входит Туманность Треугольника, Туманность Андромеды и еще 31 система. Скопления галактик – самые крупные из известных устойчивых структур Вселенной, их удерживает воедино гравитационная сила и еще какой-то фактор. Ученые подсчитали, что одного лишь притяжения явно недостаточно для поддержания стабильности этих объектов. Научного обоснования данного феномена пока не существует;
  4. Следующим уровнем структуры Вселенной являются сверхскопления галактик, каждая из которых содержит десятки, а то и сотни галактик и скоплений. Однако тяготение их уже не удерживает, поэтому они следуют за расширяющейся Вселенной;
  5. Последним уровнем организации мироздания являются ячейки или пузыри, стенки которых формируют сверхскопления галактик. Между ними находятся пустотные области, именуемые войдами. Эти структуры Вселенной имеют масштабы около 100 Мпк. На этом ярусе наиболее заметны процессы расширения Вселенной, также с ним связано реликтовое излучение – отголосок Большого взрыва.

Как возникло мироздание

Как появилась Вселенная? Что было до этого момента? Как она превратилась в то бесконечное пространство, известное нам сегодня? Было ли это случайностью или закономерным процессом?

После десятилетий дискуссий и яростных споров, физики и астрономы практически пришли к консенсусу относительно того, что мироздание появилось в результате взрыва колоссальной мощности. Он не только породил все вещество во Вселенной, но и определил физические законы, по которым существует известный нам космос. Это называется теория Большого взрыва.

Согласно этой гипотезе, когда-то вся материя каким-то непостижимым образом была собрана в одной небольшой точке с бесконечной температурой и плотностью. Она получила название сингулярности. 13,8 млрд лет назад точка взорвалась, образовав звезды, галактики, их скопления и другие астрономические тела Вселенной.

Почему и как это произошло – непонятно. Ученым приходится выносить за скобки множество вопросов, связанных с природой сингулярности и ее происхождением: законченной физической теории этого этапа истории Вселенной пока не существует. Следует отметить, что есть и другие теории возникновения Вселенной, но они имеют гораздо меньше приверженцев.

Термин «Большой взрыв» вошел в оборот в конце 40-х годов после публикации работ британского астронома Хойла. Сегодня данная модель досконально проработана – физики могут уверенно описать процессы, происходившие через доли секунды после этого события. Еще можно добавить, что данная теория позволила определить точный возраст Вселенной и описать основные этапы ее эволюции.

Главным доказательством теории Большого взрыва является наличие реликтового излучения. Оно было открыто в 1965 году. Данный феномен возник в результате рекомбинации атомов водорода. Реликтовое излучение можно назвать основным источником информации о том, как была устроена Вселенная миллиарды лет назад. Оно изотропно и равномерно заполняет космическое пространство.

Еще одним аргументом в пользу объективности данной модели является сам факт расширения Вселенной. Собственно говоря, экстраполируя этот процесс в прошлое, ученые и пришли к подобной концепции.

Есть в теории Большого взрыва и слабые места. Если бы мироздание образовалось мгновенно из одной небольшой точки, то должно было существовать неоднородное распределение вещества, чего мы не наблюдаем. Также данная модель не может объяснить, куда подевалась антиматерия, количество которой в «момент творения» не должно было уступать обычной барионной материи. Однако сейчас число античастиц во Вселенной мизерно. Но самый весомый недостаток данной теории – ее неспособность объяснить феномен Большого взрыва, он просто воспринимается как свершившийся факт. Мы не знаем, как выглядела Вселенная до момента сингулярности.

Существуют и другие гипотезы зарождения и дальнейшей эволюции мироздания. Долгие годы была популярна модель стационарной Вселенной. Ряд ученых придерживались мнения, что в результате квантовых флуктуаций она возникла из вакуума. В их числе был и знаменитый Стивен Хокинг. Ли Смолин выдвинул теорию о том, что наша, как и другие Вселенные, образовались внутри черных дыр .

Предпринимались попытки улучшить существующую теорию Большого взрыва. Например, существует гипотеза о цикличности Вселенной, согласно которой, рождение из сингулярности – не более чем ее переход из одного состояния в другое. Правда, такой подход противоречит второму закону термодинамики.

Эволюция мироздания или что происходило после Большого взрыва

Теория Большого взрыва позволила ученым создать точную модель эволюции Мироздания. И сегодня мы неплохо знаем, какие процессы происходили в молодой Вселенной. Исключение составляет лишь самый ранний этап творения, который по-прежнему остается предметом яростных обсуждений и споров. Конечно, для достижения подобного результата одной теоретической основы было недостаточно, понадобились годы исследований Вселенной и тысячи экспериментов на ускорителях.

Сегодня наука выделяет следующие этапы после Большого взрыва:

  1. Самый ранний из известных нам периодов называется Планковской эрой, он занимает отрезок от 0 до 10-43 секунд. В это время вся материя и энергия Вселенной была собрана в одной точке, а четыре основных взаимодействия были едины;
  2. Эпоха Великого объединения (с 10−43 по 10−36 секунд). Она характеризуется появлением кварков и разделением основных видов взаимодействий. Главным событием этого периода считается выделение гравитационной силы. В эту эру начали формироваться законы Вселенной. Сегодня мы имеем возможность для подробного описания физических процессов этой эпохи;
  3. Третий этап творения называется Эпохой инфляции (с 10−36 по 10−32). В это время началось стремительное движение Вселенной со скоростью, значительно превосходящей световую. Она становится больше, чем современная видимая Вселенная. Начинается охлаждение. В данный период окончательно разделяются фундаментальные силы мироздания;
  4. В период с 10−32 по 10−12 секунды появляются «экзотические» частицы типа бозона Хиггса, пространство заполнила кварк-глюонная плазма. Промежуток с 10−12 по 10−6 секунды называется эпохой кварков, с 10−6 по 1 секунду – адронов, в 1 секунду после Большого взрыва начинается эра лептонов;
  5. Фаза нуклеосинтеза. Она длилась примерно до третьей минуты от начала событий. В этот период во Вселенной из частиц возникают атомы гелия, дейтерия, водорода. Продолжается охлаждение, пространство становится прозрачным для фотонов;
  6. Через три минуты после Большого взрыва начинается эра Первичной рекомбинации. В этот период появилось реликтовое излучение, которое астрономы изучают до сих пор;
  7. Период 380 тыс. – 550 млн лет называют Темными веками. Вселенная в это время заполнена водородом, гелием, различными видами излучения. Источников света во Вселенной не было;
  8. Через 550 млн лет после Сотворения появляются звезды, галактики и прочие чудеса Вселенной. Первые звезды взрываются, освобождая материю для образования планетных систем. Данный период называется Эрой реионизации;
  9. В возрасте 800 млн лет во Вселенной начинают образовываться первые звездные системы с планетами. Наступает Эра вещества. В этот период формируется и наша родная планета.

Считается, что интерес для космологии представляет период с 0,01 секунды после акта творения и по наши дни. В этот временной отрезок сформировались первичные элементы, из них возникли звёзды, галактики, Солнечная система. Для космологов особо важным периодом считается эра рекомбинации, когда возникло реликтовое излучение, с помощью которого продолжается изучение известной Вселенной.

История космологии: древнейший период

Человек задумывался об устройстве окружающего мира с незапамятных времен. Наиболее ранние представления о строении и законах Вселенной можно обнаружить в сказках и легендах разных народов мира.

Считается, что регулярные астрономические наблюдения впервые стали практиковаться в Месопотамии. На этой территории последовательно проживали несколько развитых цивилизаций: шумеры, ассирийцы, персы. О том, как они представляли себе Вселенную, мы можем узнать из множества клинописных табличек, найденных на месте древних городов. Первые записи, касающиеся движения небесных тел, датируются VI тысячелетием до нашей эры.

Из астрономических явлений шумеров больше всего интересовали циклы – смены времен года и фаз луны. От них зависел будущий урожай и здоровье домашних животных, следовательно, и выживание человеческой популяции. Из этого был сделан вывод о влиянии небесных тел на процессы, происходящие на Земле . Стало быть, изучая Вселенную, можно предсказывать свое будущее – так родилась астрология.

Шумеры изобрели шест для определения высоты Солнца, создали солнечный и лунный календарь, описали основные созвездия, открыли некоторые законы небесной механики.

Большое внимание движению космических объектов уделялось в религиозных практиках Древнего Египта. Жители долины Нила использовали геоцентрическую модель Вселенной, в которой Солнце вращалось вокруг Земли. До нас дошло множество древнеегипетских текстов, содержащих астрономические сведения.

Значительных высот наука о небе достигла в Древнем Китае. Здесь еще в III тысячелетии до н. э. появилась должность придворного астронома, а в XII веке до н. э. были открыты первые обсерватории. О солнечных затмениях, пролетах комет, метеоритных потоках и других интересных космических событиях древности мы в основном знаем из китайских летописей и хроник, которые скрупулёзно велись на протяжении столетий.

В большом почете астрономия была у эллинов. У них изучением этого вопроса занимались многочисленные философские школы, каждая из которых, как правило, имела собственную систему Вселенной. Греки первыми выдвинули предположение о шарообразной форме Земли и о вращении планеты вокруг собственной оси. Астроном Гиппарх ввел в оборот понятия апогея и перигея, эксцентриситета орбиты, разработал модели движения Солнца и Луны, высчитал периоды обращения планет. Большой вклад в развитие астрономии внес Птолемей, которого можно назвать творцом геоцентрической модели Солнечной системы.

Больших высот в изучении законов Вселенной достигла цивилизация майя. Это подтверждают результаты археологических раскопок. Жрецы умели предсказывать солнечные затмения, они создали совершенный календарь, построили многочисленные обсерватории. Астрономы майя наблюдали ближайшие планеты и смогли точно определить их периоды обращения.

Средние века и Новое время

После крушения Римской империи и распространения христианства, Европа почти на тысячелетие погрузилась в Темные века – развитие естественных наук, в том числе и астрономии, практически остановилось. Европейцы черпали информацию об устройстве и законах Вселенной из библейских текстов, немногочисленные астрономы твердо придерживались геоцентрической системы Птолемея, небывалой популярностью пользовалась астрология. Реальное изучение учеными Вселенной началось только в эпоху Возрождения.

В конце XV столетия кардиналом Николаем Кузанским была выдвинута смелая идея об универсальности мироздания и бесконечности глубин Вселенной. Уже к XVI веку стало понятно, что взгляды Птолемея ошибочны, и без принятия новой парадигмы дальнейшее развитие науки немыслимо. Поломать старую модель решился польский математик и астроном Николай Коперник, предложивший гелиоцентрическую модель Солнечной системы.

С современной точки зрения, его концепция была несовершенной. У Коперника движение планет обеспечивалось вращением небесных сфер, к которым они крепились. Сами орбиты имели круговую форму, а на границе мира находилась сфера с неподвижными звездами. Однако, поместив Солнце в центр системы, польский ученый, без сомнения, совершил настоящую революцию. Историю астрономии можно разделить на две большие части: древнейший период и изучение Вселенной от Коперника до наших дней.

В 1608 году итальянский ученый Галилей изобрел первый в мире телескоп, который дал огромный толчок развитию наблюдательной астрономии. Теперь ученые могли созерцать глубины Вселенной. Оказалось, что Млечный путь состоит из миллиардов звезд, Солнце имеет пятна, Луна – горы, а вокруг Юпитера вращаются спутники. Появление телескопа вызвало настоящий бум оптических наблюдений за чудесами Вселенной.

В середине XVI века датский ученый Тихо Браге первым начал регулярные астрономические наблюдения. Он доказал космическое происхождение комет, опровергнув тем самым идею Коперника о небесных сферах. В начале XVII столетия Иоганн Кеплер разгадал тайны движения планет, сформулировав свои знаменитые законы. В это же время были открыты туманности Андромеды и Ориона, кольца Сатурна, составлена первая карта лунной поверхности.

В 1687 году Исааком Ньютоном был сформулирован закон всемирного тяготения, объясняющий взаимодействие всех составляющих Вселенной. Он позволил увидеть скрытый смысл законов Кеплера, которые, по сути, были выведены эмпирическим путем. Принципы, открытые Ньютоном, позволили ученым по-новому взглянуть на пространство Вселенной.

XVIII столетие стало периодом бурного развития астрономии, значительно расширившим границы известной Вселенной. В 1785 году Кант выдвинул блестящую идею, что Млечный путь – это огромное звездное скопление, собранное воедино гравитацией.

В это время на «карте Вселенной» появлялись новые небесные тела, совершенствовались телескопы.

В 1785 году английский астроном Гершель на основе законов электромагнетизма и ньютоновской механики попытался создать модель Вселенной и определить ее форму. Однако он потерпел неудачу.

В XIX веке инструменты ученых стали более точными, появилась фотографическая астрономия. Спектральный анализ, появившийся в середине столетия, привел к настоящей революции в наблюдательной астрономии – теперь темой для исследований стал химический состав объектов. Был открыт пояс астероидов, измерена скорость света.

Эпоха прорывов или новейшее время

Двадцатое столетия стало эпохой настоящих прорывов в астрономии и космологии. В начале века Эйнштейн явил миру свою теорию относительности, которая совершила настоящий переворот в наших представлениях о мироздании и позволила по-новому взглянуть на свойства Вселенной. В 1929 году Эдвин Хаббл обнаружил, что наша Вселенная расширяется. В 1931 году Жорж Леметр выдвинул идею о ее образовании из одной крошечной точки. По сути, это было начало теории Большого взрыва. В 1965 году открыли реликтовое излучение, подтвердившее эту гипотезу.

В 1957 году на орбиту был отправлен первый искусственный спутник, после чего началась космическая эра. Теперь астрономы могли не только наблюдать за небесными телами в телескопы, но и исследовать их вблизи с помощью межпланетных станций и спускаемых зондов. Мы даже смогли высадиться на поверхности Луны.

90-е годы можно назвать «периодом темной материи». Ее открытие объяснило ускорение расширения Вселенной. В это время в эксплуатацию были введены новые телескопы, позволившие нам раздвинуть пределы известной Вселенной.

В 2016 году были открыты гравитационные волны, что, вероятно, положит начало новому разделу астрономии.

За последние столетия мы значительно расширили границы наших познаний о Вселенной. Однако, на самом деле, люди лишь приоткрыли дверь и заглянули в огромный и удивительный мир, полный тайн и потрясающих чудес.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Сложно представить время за 13,7 миллиардов лет до сегодняшнего дня, когда вся Вселенная представляла собой сингулярность. Согласно теории Большого взрыва, один из главных претендентов на роль объяснения того, откуда появилась Вселенная и вся материя в космосе - все было сжато в точку, меньшую, чем субатомная частица. Но если это еще можно принять, задумайтесь вот о чем: что же было до того, как случился Большой взрыв?

Этот вопрос современной космологии уходит корнями еще в четвертое столетие нашей эры. 1600 лет назад теолог Августин Блаженный пытался понять природу Бога до сотворения Вселенной. И знаете, к чему он пришел? Время было частью Божьего творения и просто не было никакого «до».

Один из лучших физиков 20 века Альберт Эйнштейн пришел практически к таким же выводам в разработке своей теории относительности. Достаточно обратить внимание на влияние массы на время. Гигантская масса планеты искажает время, заставляя его течь медленнее для человека на поверхности, нежели для космонавта на орбите. Разница слишком мала, чтобы быть очевидной, но на самом деле человек, стоящий у большого камня, стареет медленнее, чем тот, кто стоит в поле. Но чтобы стать моложе на секунду, понадобится миллиард лет. Сингулярность до большого взрыва обладала всей массой вселенной, что, фактически, ставило время в тупик.

По теории относительности Эйнштейна, время появилось на свет ровно в тот момент, когда сингулярность начала расширяться и вышла за пределы сжатой бесконечности. Спустя десятилетия после смерти Эйнштейна развитие квантовой физики и множество новых теорий возобновили споры о природе Вселенной до Большого взрыва. Давайте посмотрим.

Браны, циклы и другие идеи
«А Бог плюнул, ушел и хлопнул дверью,
Мы были за ним - а дверей уже нет».
А. Непомнящий

Что если наша Вселенная является потомком другой, старшей Вселенной? Некоторые астрофизики полагают, что пролить свет на эту историю поможет реликтовое излучение, оставшееся от большого взрыва: космический микроволновый фон.

Впервые астрономы зафиксировали реликтовое излучение в 1965 году, и оно породило определенные проблемы в теории большого взрыва - проблемы, которые заставили ученых ненадолго (до 1981 года) заморочиться и вывести инфляционную теорию. Согласно этой теории, в первые мгновения своего существования Вселенная начала чрезвычайно быстро расширяться. Также теория объясняет температуру и плотность флуктуаций реликтового излучения и подсказывает, что эти флуктуации должны быть одинаковыми.

Но, как выяснилось, нет. Последние исследования дали понять, что Вселенная на самом деле однобока, и в некоторых областях флуктуаций больше, чем в других. Некоторые космологи считают, что это наблюдение подтверждает, что у нашей Вселенной была «мать»(!)

В теории хаотической инфляции эта идея приобретает размах: бесконечный прогресс инфляционных пузырьков порождает обилие вселенных, и каждая из них порождает еще больше инфляционных пузырьков в огромном количестве Мультивселенных.

Тем не менее, существуют модели, которыми пытаются объяснить образование сингулярности до большого взрыва. Если вы думаете о черных дырах как о гигантских мусоросборниках, они являются главными кандидатами первоначального сжатия, поэтому наша расширяющаяся Вселенная вполне может быть белой дырой - выходным отверстием черной дыры, и каждая черная дыра в нашей Вселенной может вмещать в себя отдельную вселенную.

Другие ученые считают, что в основе формирования сингулярности лежит цикл под названием «большой скачок», в результате которого расширяющаяся вселенная в итоге коллапсирует сама в себя, порождая другую сингулярность, которая, опять же, порождает другой большой взрыв. Этот процесс будет вечным, и все сингулярности и все схлопывания не будут представлять собой ничего другого, кроме как переход в другую фазу существования Вселенной.

Последнее объяснение, которое мы рассмотрим, использует идею циклической Вселенной, порожденной теорией струн. Она предполагает, что новая материя и потоки энергии появляются каждые триллионы лет, когда две мембраны или браны, лежащие за пределами наших измерений, сталкиваются между собой.

Что было до Большого взрыва? Вопрос остается открытым. Может быть, ничего. Может, другая Вселенная или другая версия нашей. Может, океан Вселенных, в каждой из которых - свой набор законов и констант, диктующих природу физической реальности.

Сегодня мы говорим об этой, ну как ее, Вселенной. Так уж получилось, что однажды она откуда-то появилась, и вот все мы здесь. Кто-то читает эту статью, кто-то готовится к экзамену, проклиная все на свете... Самолеты летают, поезда ходят, планеты крутятся, где-то всегда что-то происходит. Людям всегда было интересно знать один сложный ответ на простой вопрос. Как же все начиналось и как это мы докатились до того, что есть? Иными словами - как родилась Вселенная?

Итак, вот они - разные версии и модели происхождения Вселенной.

Креационизм: все создал Господь Бог


Среди всех теорий о происхождении Вселенной эта появилась самой первой. Очень хорошая и удобная версия, которая, пожалуй, будет иметь актуальность всегда. Кстати, многие ученые физики, несмотря на то что наука и религия часто представляются понятиями противоположными, верили в Бога. Например, Альберт Эйнштейн говорил:

«Каждый серьезный естествоиспытатель должен быть каким-то образом человеком религиозным. Иначе он не способен себе представить, что те невероятно тонкие взаимозависимости, которые он наблюдает, выдуманы не им. В бесконечном универсуме обнаруживается деятельность бесконечно совершенного Разума. Обычное представление обо мне, как об атеисте – большое заблуждение. Если это представление почерпнуто из моих научных работ, могу сказать, что мои научные работы не поняты»


Теория Большого Взрыва

Пожалуй, самая распространенная и наиболее признанная модель происхождения нашей Вселенной. Во всяком случае, о ней слышал практически каждый. Что говорит нам Большой Взрыв? Однажды, лет эдак 14 миллиардов назад, пространства и времени не было, а вся масса вселенной была сосредоточена в крохотной точке с невероятной плотностью – в сингулярности. В один прекрасный момент (если так можно сказать -времени-то не было) сингулярность не выдержала из-за возникшей в ней неоднородности, произошел так называемый Большой Взрыв. И с тех пор Вселенная постоянно расширяется и остывает.


Модель расширяющейся Вселенной

Сейчас доподлинно известно, что Галактики и иные космические объекты удаляются друг от друга, а значит, Вселенная расширяется. В 20-м веке существовало множество альтернативных теорий происхождения Вселенной. Одной из самых популярных была модель стационарной Вселенной, за которую ратовал сам Эйнштейн. Согласно этой модели, Вселенная не расширяется, а находиться в стационарном состоянии благодаря какой-то удерживающей ее силе.


Красное смещение – это наблюдаемое для далеких источников понижение частот излучения, которое объясняется отдалением источников (галактик, квазаров) друг от друга. Данный факт свидетельствует о том, что Вселенная расширяется.

Реликтовое излучение – это как бы отголоски большого взрыва. Ранее Вселенная представляла собой горячую плазму, которая постепенно остывала. Еще с тех далеких времен во Вселенной остались так называемые блуждающие фотоны, которые образуют фоновое космическое излучение. Ранее при более высоких температурах Вселенной данное излучение было гораздо мощнее. Сейчас же его спектр соответствует спектру излучения абсолютно твердого тела с температурой всего 2,7 Кельвин.

Теория струн

Современное изучение эволюции Вселенной невозможно без согласования его с квантовой теорией. Так, например, в рамках теории струн (теория струн основана на гипотезе о том, что все элементарные частицы и их фундаментальные взаимодействия возникают в результате колебаний и взаимодействий ультрамикроскопических квантовых струн ), предполагается модель множественной Вселенной. Конечно, там тоже был Большой Взрыв, но он произошел не просто так и из ничего, а, возможно, в результате столкновения нашей Вселенной с какой-то другой, еще одной Вселенной.

Собственно, кроме Большого Взрыва, породившего нашу Вселенную, во множественной Вселенной происходит множество других Больших Взрывов, порождающих множество других Вселенных, развивающихся по своим, отличным от известных нам законам физики.


Скорее всего мы никогда не узнаем наверняка, как, откуда и почему появилась Вселенная. Тем не менее, размышлять об этом можно очень долго и интересно, а чтобы у Вас было достаточно пищи для размышлений, предлагаем посмотреть увлекательное видео на тему современных теорий происхождения Вселенной.

Проблемы развития Вселенной слишком масштабны. Настолько масштабны, что, по сути, даже не являются проблемами. Предоставим физикам-теоретикам ломать над ними головы и перенесемся из глубин Вселенной на Землю, где нас, возможно, ждет неначатый курсач или диплом. Если это так, мы предлагаем свое решение этого вопроса. Закажите отличную работу у , вздохните спокойно, и будьте в гармонии с собой и Вселенной.