Гелий-три — энергия будущего. Гелий-три — энергия будущего Зачем? или ядерный синтез - алхимия наяву

Гелий-три. Странное и непонятное словосочетание. Тем не менее чем дальше, тем больше мы будем слышать его. Потому что, по мнению специалистов, именно гелий-три спасет наш мир от надвигающегося энергетического кризиса. И в этом предприятии активнейшая роль отводится России.

Луна

Перспективная термоядерная энергетика, использующая в качестве основы реакцию синтеза дейтерий-тритий, хотя и более безопасна, чем энергетика деления ядра атома, которая используется на современных АЭС, все же имеет ряд существенных недостатков.

  • Во-первых , при этой реакции выделяется куда большее (на порядок!) число высокоэнергетичных нейтронов. Столь интенсивного нейтронного потока ни один из известных материалов не может выдержать свыше шести лет - при том, что имеет смысл делать реактор с ресурсом как минимум в 30 лет. Следовательно, первую стенку тритиевого термоядерного реактора будет необходимо заменять - а это очень сложная и дорогостоящая процедура, связанная к тому же с остановкой реактора на довольно длительный срок.
  • Во-вторых , от мощного нейтронного излучения необходимо экранировать магнитную систему реактора, что усложняет и, соответственно, удорожает конструкцию.
  • В-третьих , многие элементы конструкции тритиевого реактора после окончания эксплуатации будут высокоактивными и потребуют захоронения на длительный срок в специально созданных для этого хранилищах.

В случае же использования в термоядерном реакторе дейтерия с изотопом гелия-3 вместо трития большинство проблем удается решить. Интенсивность нейтронного потока падает в 30 раз - соответственно, можно без труда обеспечить срок службы в 30-40 лет. После окончания эксплуатации гелиевого реактора высокоактивные отходы не образуются, а радиоактивность элементов конструкции будет так мала, что их можно захоронить буквально на городской свалке, слегка присыпав землей.

В чем же проблема? Почему мы до сих пор не используем такое выгодное термоядерное топливо?

Прежде всего, потому, что на нашей планете этого изотопа чрезвычайно мало. Рождается он на Солнце, отчего иногда называется «солнечным изотопом». Его общая масса там превышает вес нашей планеты. В окружающее пространство гелий-3 разносится солнечным ветром. Магнитное поле Земли отклоняет значительную часть этого ветра, а потому гелий-3 составляет лишь одну триллионную часть земной атмосферы - примерно 4000 т. На самой Земле его еще меньше - около 500 кг.

На Луне этого изотопа значительно больше. Там он вкрапляется в лунный грунт «реголит», по составу напоминающий обычный шлак. Речь идет об огромных - практически неисчерпаемых запасах!

Анализ шести образцов грунта, привезенных экспедициями «Аполлон», и двух образцов, доставленных советскими автоматическими станциями «Луна », показал, что в реголите, покрывающем все моря и плоскогорья Луны, содержится до 106 т гелия-3, что обеспечило бы потребности земной энергетики, даже увеличенной по сравнению с современной в несколько раз, на тысячелетие! По современным прикидкам, запасы гелия-3 на Луне на три порядка больше - 109 т.

Кроме Луны, гелий-3 можно найти в плотных атмосферах планет-гигантов, и, по теоретическим оценкам, запасы его только на Юпитере составляют 1020 т, чего хватило бы для энергетики Земли до скончания времен.

Проекты добычи гелия-3

Реголит покрывает Луну слоем толщиной в несколько метров. Реголит лунных морей богаче гелием, чем реголит плоскогорий. 1 кг гелия-3 содержится приблизительно в 100 000 т реголита.

Следовательно для того, чтобы добыть драгоценный изотоп, необходимо переработать огромное количество рассыпчатого лунного грунта.

С учетом всех особенностей технология добычи гелия-3 должна включать следующие процессы:

1. Добыча реголита.

Специальные «комбайны» будут собирать реголит с поверхностного слоя толщиною около 2 м и доставлять его на пункты переработки или перерабатывать непосредственно в процессе добычи.

2. Выделение гелия из реголита.

При нагреве реголита до 600?С выделяется (десорбируется) 75% содержащегося в реголите гелия, при нагреве до 800?С - почти весь гелий. Нагрев пыли предлагается вести в специальных печах, фокусируя солнечный свет либо пластмассовыми линзами, либо зеркалами.

3. Доставка на Землю космическими кораблями многоразового использования.

При добыче гелия-3 из реголита извлекаются также многочисленные вещества: водород, вода, азот, углекислый газ, азот, метан, угарный газ, - которые могут быть полезны для поддержания лунного промышленного комплекса.

Проект первого лунного комбайна, предназначенного для переработки реголита и выделения из него изотопа гелия-3, был предложен еще группой Дж.Кульчински. В настоящее время частные американские компании разрабатывают несколько прототипов, которые, видимо, будут представлены на конкурс после того, как НАСА определится с чертами будущей экспедиции на Луну.

Понятно, что, кроме доставки комбайнов на Луну, там придется возвести хранилища, обитаемую базу (для обслуживания всего комплекса оборудования), космодром и многое другое. Считается, тем не менее, что высокие затраты на создание развитой инфраструктуры на Луне окупятся сторицей в плане того, что грядет глобальный энергетический кризис, когда от традиционных видов энергоносителей (уголь, нефть, природный газ) придется отказаться.

Главная технологическая проблема

На пути к созданию энергетики на основе гелия-3 есть одна немаловажная проблема. Дело в том, что реакцию дейтерий-гелий-3 осуществить гораздо сложнее, чем реакцию дейтерий-тритий.

В первую очередь, необычайно трудно поджечь смесь этих изотопов. Расчетная температура, при которой пойдет термоядерная реакция в дейтерий-тритиевой смеси, - 100-200 миллионов градусов. При использовании гелия-3 требуемая температура на два порядка выше. Фактически мы должны зажечь на Земле маленькое солнце.

Однако история развития ядерной энергетики (последние полвека) демонстрирует увеличение генерируемых температур на порядок в течение 10 лет. В 1990 году на европейском токамаке JET уже жгли гелий-3, при этом полученная мощность составила 140 кВт. Примерно тогда же на американском токамаке TFTR была достигнута температура, необходимая для начала реакции в дейтерий-гелиевой смеси.

Впрочем, зажечь смесь еще полдела. Минус термоядерной энергетики - сложность получения практической отдачи, ведь рабочим телом является нагретая до многих миллионов градусов плазма, которую приходится удерживать в магнитном поле.

Эксперименты по приручению плазмы проводятся уже многие десятилетия, но лишь в конце июня прошлого года в Москве представителями ряда стран было подписано соглашение о строительстве на юге Франции в городе Кадараш Международного экспериментального термоядерного реактора (ITER) - прототипа практической термоядерной электростанции. В качестве топлива ITER будет использовать дейтерий с тритием.

Термоядерный реактор на гелии-3 будет конструктивно сложнее, чем ITER, и пока его нет даже в проектах. И хотя специалисты надеются, что прототип реактора на гелии-3 появится в ближайшие 20-30 лет, пока эта технология остается чистейшей фантастикой.

Вопрос добычи гелия-3 анализировался экспертами в ходе слушаний по вопросам будущего исследования и освоения Луны, состоявшихся в апреле 2004 года в Подкомитете по космосу и аэронавтике комитета по науке палаты депутатов Конгресса США. Их вывод был однозначен: даже в отдаленном будущем добыча гелия-3 на Луне совершенно невыгодна.

Как отметил Джон Логсдон, директор Института космической политики из Вашингтона: «Космическое сообщество США не рассматривает добычу гелия-3 в качестве серьезного предлога для возвращения на Луну. Лететь туда за этим изотопом все равно что пятьсот лет назад отправить Колумба в Индию за ураном. Привезти-то он его может, и привез бы, только еще несколько сотен лет никто не знал бы, что с ним делать».

Добыча гелия-3 как национальный проект

«Мы говорим сейчас о термоядерной энергетике будущего и новом экологическом типе топлива, которое нельзя добыть на Земле. Речь идет о промышленном освоении Луны для добычи гелия-3».

Это высказывание главы ракетно-космической корпорации «Энергия» Николая Севастьянова было воспринято российскими научными обозревателями как заявка на формирование нового «национального проекта».

Ведь по сути, одной из главных функций государства, особенно в XX веке, было как раз формулирование перед обществом задач на грани воображения. Это касалось и советского государства: электрификация, индустриализация, создание атомной бомбы, первый спутник, поворот рек.

Сегодня в РФ государство пытается, но не может сформулировать задачи на грани невозможного. Государству нужно, чтобы кто-то показал ему общенациональный проект и обосновал выгоды, которые из этого проекта в теории проистекают. Программа освоения и добычи гелия-3 с Луны на Землю с целью снабжения термоядерной энергетики топливом идеально отвечает этим требованиям.

«Я просто думаю, что есть дефицит в какой-то крупной технологической задаче, - подчеркнул в интервью доктор физико-математических наук, ученый секретарь Института космических исследований РАН Александр Захаров. - Может быть, из-за этого и возникли в последнее время все эти разговоры о добыче на Луне гелия-3 для термоядерной энергетики. Если Луна - источник полезных ископаемых, и оттуда везти этот гелий-3, а на Земле не хватает энергии… Все это понятно, звучит очень красиво. И под это легко, может быть, уговорить влиятельных людей выделить деньги. Я думаю, что это так».

ГИПОТЕЗЫ, ФАКТЫ, РАССУЖДЕНИЯ

Лунный Гелий-3 - термоядерное горючее будущего.

Комментарий автора сайта: С активацией американской Лунной космической программы всё чаще приходится слышать о том, что наряду с наличием воды, на Луне находятся огромные запасы изотопа гелия-3 - топлива ядерной энергетики будущего. Так ли это, какие перспективы это сулит человечеству, нужно ли вообще нам исследовать Луну и каким образом это можно осуществить - вот только небольшой перечень вопросов, ответы на которые Вы узнаете в данной статье, являющейся главой "Гелий-3" из книги академика РАН Эрика Михайловича Галимова "Замыслы и просчёты: Фундаментальные космические исследования в России последнего двадцатилетия. Двадцать лет бесплодных усилий."

Тот факт, что Луна обогащена гелием-3, известен с тех пор, как на Землю было впервые доставлено лунное вещество. В образцах лунного грунта, привезенных американскими астронавтами в ходе экспедиций «Аполлон» и доставленных советскими автоматическими аппаратами «Луна», относительная концентрация изотопа гелия 3 Не (отношение 3 Не/ 4 Не) оказалась в тысячу раз выше, чем в земном гелии. Это - результат облучения незащищенной атмосферой поверхности Луны корпускулярным излучением Солнца. В течение миллиардов лет в поверхностный пылевидный слой (реголит) Луны внедряются атомы элементов, испускаемых Солнцем, больше всего - водород и гелий в изотопном соотношении, присущем Солнцу. Другой факт - что 3 Не является эффективным термоядерным горючим - известен был физикам ещё раньше. Однако никакого практического вывода из этих фактов в те годы не делалось. Земная энергетика обеспечивалась за счёт быстро развивающейся добычи нефти и газа. Атомная энергетика базировалась на доступном урановом сырье. Управляемый термоядерный синтез не был осуществлен даже на более простой реакции дейтерия с тритием. На Земле гелий-3 в промышленных количествах отсутствует.

В конце 80-х - начале 90-х гг. появились публикации о возможном использовании Луны в качестве источника энергии для Земли. Предлагались, например, проекты передачи на Землю собранной на поверхности Луны солнечной энергии в форме сфокусированного высокочастотного луча. Высказывалась и идея добычи и доставки лунного гелия-3. Энтузиастом этой идеи, в частности, был побывавший на Луне американский астронавт Гарольд Шмидт. Он написал серьезную книгу о возможности использования гелия-3.

Призывая вернуться к исследованиям Луны, я помимо конкретной и актуальной задачи исследования внутреннего строения Луны, постоянно упоминал в качестве задачи, которую нужно иметь в виду в качестве отдаленной перспективы, освоение ресурсов лунного гелия-3.

Я думаю, что сегодня мы не предвидим в полной мере того, что даст нам освоение Луны, и потому приступаем к этому неуверенно, робко и с задержкой. Мне не раз приходилось писать о том, что исследование Луны имеет большое значение для фундаментальной геологии. Реконструкция ранней истории Земли, возникновения на ней атмосферы, океанов и жизни, невозможна без изучения Луны. Хотя бы просто потому, что следы первых 500-600 млн. лет истории Земли полностью стерты в ее геологической летописи, а на Луне они сохранились. И потому что Луна и Земля представляют генетически единую систему.

В последние месяцы в средствах массовой информации много говорится о наличии у ряда государств (в первую очередь США, России и Китая) проектов по добыче гелия-3 для управляемых термоядерных реакций. Эти проекты рассматриваются многими буквально как решение всех проблем человечества. Так что же такое гелий-3?

Из всех атомов гелия, которые существуют на Земле, 99,999862% атомов имеют массу, в 4 раза превышающую массу атома водорода. Это "гелий-4". Его атомные ядра – это альфа-частицы, которые образуются при радиоактивном распаде. А остальные 0,000138% атомов гелия тяжелее атома водорода лишь в 3 раза. Это и есть гелий-3.

Соотношение гелия-3 и гелия-4 в масштабах Вселенной существенно иное - там количество этих изотопов различается примерно на один порядок. В метеоритном веществе и в лунных породах содержание гелия-3 колеблется от 17 до 32% от всего количества гелия. Миллиарды лет назад на Земле соотношение гелия-4 и гелия-3 было такое же, как и во всей Вселенной. Однако за прошедшее в тех пор время гелий, образовавшийся при первичном нуклеосинтезе, полностью улетучился из земной атмосферы. И весь гелий, который сегодня есть на Земле, образовался в результате радиоактивного распада. То есть на Земле существует практически только гелий-4. А гелий-3 образуется только на Солнце в результате происходящих там термоядерных реакций (в основном на Солнце образуется гелий-4, но и гелия-3 там образуется тоже немало). С Солнца эти элементы разлетаются в пространство в виде так называемого "солнечного ветра" (особый вид космических лучей). На Землю и другие планеты "солнечный ветер" не попадает: мешает атмосфера и магнитное поле. А вот, скажем, на Луну, лишенную атмосферы, частицы "солнечного ветра" попадают и "застревают" в поверхностном слое грунта.

До некоторых пор эти факты представляли чисто теоретический интерес. В практической плоскости о гелии-3 заговорили, когда стало ясно, что нефть закончится в ближайшие десятилетия. Угля и газа хватит чуть подольше, но тоже не надолго. Очевидно, что единственный способ решения энергетической проблемы – это использование энергии атомного ядра. Однако и запасы урана тоже не бесконечны… Поэтому уже полвека неизменно популярна идея использования термоядерного синтеза.

В термоядерных реакциях, происходящих на Солнце, четыре атома легкого изотопа водорода соединяются в один атом гелия с выделением энергии. Однако для термоядерных реакций, производимых на Земле, легкий изотоп водорода (составляющий 99,985% всего водорода) не подойдет, потому что у реакции слияния легких изотопов водорода чрезвычайно малое сечение (вероятность реакции). Именно это низкое сечение реакции обеспечивает устойчивость Солнца – иначе на нем шла бы не устойчивая термоядерная реакция, а термоядерный взрыв.

Для термоядерных реакций, производимых на Земле, нужен "тяжелый водород" - дейтерий. Из водорода, который существует на Земле (в основном в виде воды) дейтерий составляет 0,015%. Добывать его можно электролизом обычной воды, в которой дейтерий составляет 0,0017% по массе. Однако, кроме дейтерия, для термоядерной реакции нужен второй компонент, атом которого должен быть в 3 раза тяжелее водорода. Это может быть либо "сверхтяжелый водород", который называется тритий, либо тот самый гелий-3. Тритий на Земле не существует, кроме того, он очень сильно радиоактивен и неустойчив. Для водородных бомб и экспериментальных установок тритий годится, а для "промышленных" реакторов – нет (в водородных бомбах тритий образуется при облучении лития нейтронами в результате реакции: 6 Li + n -> 3 H + 4 He). Термоядерная реакция, происходящая с участием трития, описывается следующим уравнением: 2 H + 3 H -> 4 He + n + 17,6 МэВ. Именно такая реакция рассматривается как основная в планируемых проектах, в частности, в создаваемом международном проекте ИТЭР.

Однако недостатком такой реакции является, во-первых, необходимость для нее сильно радиоактивного трития, а, во-вторых, то, что в ходе такой реакции возникает сильное нейтронное излучение. Поэтому в последнее время создаются проекты «безнейтронной» термоядерной реакции, топливом для которой служит гелий-3 – легкий изотоп гелия. Уравнения «безнейтронных» реакций таковы:

3 He + 3 He -> 4 He + 2p + 12,8 МэВ,
3 He + D -> 4 He + p + 8,35 МэВ.

Преимущество реакций на гелии-3 по сравнению с дейтериево-тритиевой реакцией в том, что, во-первых, для нее не требуется радиоактивных изотопов в качестве топлива, а, во-вторых, получаемая энергия уносится не с нейтронами, а с протонами, из которых извлечь энергию будет легче.

Единственная проблема – практическое отсутствие гелия-3 на Земле. Но, как сказано выше, гелий-3 есть в лунном грунте. Поэтому для того, чтобы иметь источники энергии после того, как подойдет к концу ископаемые виды топлива, космические агентства разных стран разрабатывают планы строительства базы на Луне, которая будет перерабатывать лунный грунт (который называется реголит), добывать из него гелий-3 и в сжиженном виде доставлять его на термоядерные электростанции на Земле. Одной тонны гелия-3 хватит, чтобы обеспечить энергетические потребности всего человечества на несколько лет, что окупит все затраты на создание лунной базы. Буш уже поставил задачу: создать американскую лунную базу в 2015-2020 годах.

А что же сегодня предпринимается в России? Приведем подборку сообщений информационных агентств

"Россия может возобновить лунную программу в течение нескольких лет
15 января 2004 г.

В России обсуждается вопрос о возобновлении программ исследования Луны и Марса, заявил ИТАР-ТАСС первый заместитель главы Росавиакосмоса Николай Моисеев. "До конца года будет разработана Федеральная космическая программа до 2015 года, в которую, возможно, войдут и эти проекты", - сказал он. По словам Моисеева, "со стороны ученых поступает много инициатив по организации экспедиций на Луну и Марс, однако пока неизвестно, какая из них будет включена в федеральную программу".

Лунную программу Россия может реанимировать в течение нескольких лет, считает первый заместитель генерального директора Научно-производственного объединения им.Лавочкина Роальд Кремнев.
"После свертывания советской программы исследования спутника Земли в конце 70-х годов прошлого века мы более трех десятилетий поддерживаем научно-технические разработки по этой тематике на современном уровне", - утверждает Кремнев. По его словам, в настоящее время на предприятии, где был создан легендарный "Луноход", "есть серьезный задел по лунным автоматам". Создание и запуск такого аппарата, по оценке Кремнева, обойдется в 600 млн рублей.

Лунные источники энергии могут спасти Землю от глобального энергетического кризиса, считает член бюро Совета по космосу РАН, академик Эрик Галимов. Добытый на Луне и доставленный на Землю тритий может быть использован для термоядерного синтеза, утверждает ученый.
Источник: NEWSru.com

Российский ученый предлагает бульдозерами сгребать с Луны чудо-топливо
23 января 2004 г.

Академик Российской академии наук, член бюро Совета по космосу РАН Эрик Галимов считает, что нужно немедленно начать подготовку к добыче лунного топлива, сообщает ИТАР-ТАСС. Добычу гелия-3 на Луне и вывоз его оттуда космическими кораблями, по его мнению, можно будет начать через 30-40 лет.

"Чтобы обеспечить на год все человечество энергией, необходимо лишь два-три полета космических кораблей грузоподъемностью в 10 тонн, которые доставят гелий-3 с Луны... Затраты на межпланетную доставку будут в десятки раз меньше, чем стоимость вырабатываемой сейчас электроэнергии на атомных электростанциях", - сказал Галимов.

По подсчетам ученого, доставка вещества может начаться уже через 30-40 лет, но начинать работы в этой области нужно уже сейчас. По его словам, на разработку проекта "потребуется всего 25-30 миллионов долларов". Собирать гелий-3 с лунной поверхности ученый предлагает специальными бульдозерами.
Источник: Lenta.Ru

На прошлой неделе в своей речи, посвященной новой космической программе США, президент Буш объявил, что на Луне нужно создать постоянную базу, которая станет первым шагом на пути к дальнейшему освоению космоса человеком. Он также сказал, что лунный грунт можно перерабатывать для получения ракетного топлива и пригодного для дыхания воздуха.

Буш привел в качестве примера два способа переработки лунного грунта, но, вообще-то, список лунных полезных ископаемых довольно длинный... Имеющийся в лунном грунте кремний можно использовать для изготовления солнечных панелей, железо - для разных металлических конструкций, алюминий, титан и магний - для создания корабля, который отправится в космос подальше от Земли.
Ну и, конечно же, на Луне собираются добывать изотоп гелий-3, который очень редок на Земле, а производство его в земных условиях очень дорого.

(по материалам SiliconValley.com)

В марте 2003 г. руководство китайской космической программы официально объявило о начале работ по отправке исследовательского зонда к Луне. Недавно научный руководитель этого проекта академик китайской АН Оуянг Зиюань объявил о том, что уже на этом первом этапе исследования Луны Китай рассчитывает сделать большой вклад в науку и в развитие космических технологий. Так что китайский лунный проект обещает быстро окупить себя.

В ходе первого этапа китайской программы исследования Луны планируется, помимо прочего, измерить толщину лунного грунта, оценить возраст поверхности и определить количество имеющегося там гелия-3 (очень редко встречающегося на Земле изотопа гелия, который можно использовать в качестве топлива для термоядерного реактора)
(по материалам SpaceDaily)

Интересные рассуждения о космических программах, нужных для получения запасов гелия-3, даны в статье кандидата технических наук, члена-корреспондента Академии космонавтики им. К. Э. Циолковского Юрия Еськова «За чистым топливом – на Уран, опубликованной в "Российской газете", 11 апреля 2002 года. Автор пишет, что еще эффективнее, чем на Луне, искать гелий-3 в атмосферах дальних планет гигантов, например, Урана, где гелий-3 составляет 1:3000 (что в тысячу раз больше, чем в лунном грунте). По предложению автора, «Добыча гелия-3 и доставка его к Земле должна вестись беспилотными одноразовыми космическими аппаратами (“танкерами”), электроядерный двигатель которых с мощностью 100 000 кВт работает в течение всего двустороннего полета. За 10 лет аппарат преодолеет трудно вообразимую дистанцию в 6 млрд. км. Заметим, что двигатель, способный преодолеть такое гигантское расстояние за приемлемое время (10 лет), может работать только на ядерной энергии, используя то же топливо, что и нынешние АЭС (в принципе можно лететь и на солнечных батареях, но тогда аппарат будет весить сотни тысяч тонн); более того, означенный двигатель является экологически очень “грязным”. Фокус, однако, в том, что запускается он с высокой околоземной орбиты и вся жизнь его проходит в космосе, так что никаких экологических проблем для населения Земли он не создает.

Система бесперебойного снабжения наземных ТЯЭС с суммарной мощностью 3 млрд. кВт будет состоять из периодически (четырежды в год) запускаемых с околоземной орбиты “танкеров”. Запаса топлива аппарату хватит лишь в один конец: до цели он долетит с пустыми баками. Долетев до Урана и выйдя на орбиту, находящуюся в пределах атмосферы планеты, “танкер” начнет работать в режиме завода по разделению окружающей его атмосферы на компоненты: из сжиженного газа выделит товарный гелий-3 и водород, который используется как топливо для обратного полета; большая часть водорода и весь обычный гелий сбросятся за борт. Таким образом, обратная заправка (без которой задача возвращения нереализуема) оказывается фактически даровой. В результате полета на околоземную орбиту будет доставлено 70 тонн жидкого гелия-3; в каждый момент времени на трассе Земля – Уран будет находиться около 40 “танкеров”.

Возникает естественный вопрос: в какой степени существующие на сегодня технологии могут обеспечить функционирование такой системы? Ответ: большая часть этих элементов имеется, как говорят, “в железе”, остальные – на уровне далеко продвинутых проектно-конструкторских разработок, частично доведенных до опытной стадии. Главная проблема тут – бортовая энергоустановка. К нынешнему моменту накоплен огромный положительный опыт создания и эксплуатации реакторов наземных АЭС с мощностью 4 млн. кВт при ресурсе до 30 лет; мощности реакторов атомных подводных лодок достигают 100 000 кВт при ресурсе в десятки лет, есть и отечественный опыт создания и эксплуатации уникальных малоразмерных ядерных установок для космических аппаратов с мощностями до 100 кВт; высокотемпературные реакторы для космических ядерных двигателей прошли испытания и в США, и в СССР. Что касается размеров запускаемого беспилотного аппарата (450 тонн, в том числе 200 тонн топлива), то он по порядку величины соответствует массе МКС (а в окончательном проекте масса МКС планируется еще большей); суммарный же годовой грузопоток на орбиту (1900 тонн) меньше, чем планируемый для стандартных программ (космическая связь, телевещание и т.п.). Подавляющее большинство элементов такого орбитального гелиево-водородного завода существует уже сегодня и благополучно действует в криогенной промышленности». Автор говорит, что даже при сегодняшнем уровне развития техники такой проект был бы вполне экономически рентабельным: «Отпускная цена электроэнергии в мире составляет от 5 до 10 центов за кВт. ч. Из простейшей арифметики видно, что доставка с Урана гелия-3 будет оставаться рентабельной даже при цене 1 тонны в 10 млрд. долларов. Цена же выведения на орбиту одного подобного завода составляет 10 млн. долларов за тонну (кстати, такова сегодняшняя цена золота), а в ближайшей перспективе многоразовые носители снизят эту цену до 1 млн. долларов за тонну выводимого груза.».

Стали уже привычными слова, что наукоемкие отрасли (ядерная, космическая и др.) являются локомотивом экономики. Случай с гелием-3 - тот самый случай. Этот способ, который позволит решить энергетическую проблему на достаточно длительное время, в случае, если найдутся возможности изыскать средства для его реализации, сможет стать шансом на прогресс российских наукоемких отраслей: как космонавтики (что является предметом для отдельного разговора), так и термоядерной техники.
В настоящий момент есть два магистральных направления в термоядерном синтезе: токамаки и лазерный синтез. Первый из этих вариантов сейчас реализуется в проекте международного экспериментального термоядерного реактора ИТЭР. Этот реактор конструируется по схеме «токамак» (что означает сокращение от фразы «ТОроидальная КАмера с МАгнитными Катушками»). Принцип действия токамака таков: в плазменном сгустке создавается электрический ток, и при этом, как у всякого тока, у него появляется собственное магнитное поле - сгусток плазмы как бы сам становится магнитом. И тогда с помощью внешнего магнитного поля определенной конфигурации подвешивали плазменное облако в центре камеры, не позволяя ему соприкасаться со стенками. В газе всегда есть свободные ионы и электроны, которые начинают двигаться в камере по кругу. Этот ток нагревает газ, количество ионизированных атомов растет, одновременно увеличивается сила тока и повышается температура плазмы. А значит, количество водородных ядер, слившихся в ядро гелия и выделивших энергию, становится все больше. Однако эксперименты, начатые почти пятьдесят лет назад в московском Институте атомной энергии, показали, что плазма, подвешенная в магнитном поле, оказалась неустойчивой – сгусток плазмы очень быстро «распадался» и вываливался на стенки камеры. Оказалось, что к неустойчивости приводит комбинация целого ряда сложных физических процессов. Кроме того, оказалось, что время устойчивого удержания плазмы возрастает с увеличением размеров установки. Крупнейшая отечественная машина ТОКАМАК-15 уже имеет тороидальную вакуумную камеру с внешним диаметром "бублика" более пяти метров. Крупные исследовательские токамаки были построены в России, Японии, США, Франции, Англии. А несколько лет назад специалисты пришли к выводу, что оставшиеся нерешенные проблемы нужно исследовать на установке, максимально приближенной к реальному энергетическому термоядерному реактору. Это понимание и привело к работам по созданию ИТэРа. От всех других установок и методов этот вариант проведения управляемой термоядерной реакции отличается прежде всего тем, что он в основном уже вышел из сферы сомнений и поисков. Благодаря накопленной за пятьдесят лет исследований обширной базе физических и инженерно-технических данных он вплотную подошел к стадии экспериментального реактора. Это, видимо, и вдохновило международное сообщество на создание ИТЭРа – ученые решили, что даже богатой стране нет никакого смысла делать термоядерный реактор в одиночку - результатом будут знания и опыт, которые все равно станут общим достоянием и в национальную экономику сразу ничего не внесут. В то же время, объединив усилия, можно резко ускорить продвижение к своему работающему термояду и снизить собственные затраты. Поэтому в 1992 году было подписано соглашение о совместном техническом конструировании реактора ИТЭР под эгидой МАГАТЭ. А его концептуальное проектирование по инициативе нашей страны началось на четыре года раньше. В команду проектировщиков ИТЭРа вошли специалисты Европейского союза, России, США и Японии.
Другое направление на пути к управляемой термоядерной реакции – это лазерный термоядерный синтез (ЛТС). Он заключается в том, что мишень из "сырья" для термоядерной реакции облучается со всех сторон лазерными лучами, и таким образом там создаются условия, достаточные для осуществления термоядерной реакции. Сложность в том, как это осуществить технически. Моя диссертационная работа состоит в проведении компьютерного моделирования явления оптического резонанса в сферичеких мишенях при лазерном облучении. Расчеты показывают, что при определенных условиях в оптической мишени происходит концентрация энергии, при которой могут возникнуть условия, необходимые для термоядерной реакции.

То государство, которое освоит технологии термоядерного синтеза эту технологию раньше других, получит огромные преимущества перед другими. Для того, чтобы Россия не осталась на задворках цивилизации и приняла участие в разработке этих проектов, нужна политическая воля руководства государства, примерно как это было с советскими ядерным и космическим проектами в середине ХХ века.

Пройдет совсем немного времени, по меркам жизни человеческой цивилизации, как ископаемые природные богатства будут исчерпаны. Среди возможных кандидатур на замену нефти и газа называют то энергию солнца, то силу ветра, то водород. В последние годы все чаще можно услышать о новом спасении для планеты под названием гелий-3 . Что это вещество можно использовать в качестве сырья для электростанций, додумались относительно недавно.

Общие данные о веществе: свойства

В 1934 оду австралийский физик Марк Олифант, во время работы в Кавендишской лаборатории Кембриджского университета в Англии пришел к замечательному открытию. В ходе первой демонстрации ядерного синтеза при бомбардировке дейтронной мишени, он выдвинул гипотезу о существовании нового изотопа химического элемента под номером 2. Сегодня он же известен как гелий-3.

Он обладает следующими свойствами :

  • Содержит два протона, один нейтрон и два электрона;
  • Среди всех известных элементов он является единственным стабильным изотопом, который имеет больше протонов, чем нейтронов;
  • Кипит при 3,19 по Кельвину (-269,96 градусов Цельсия). Во время кипения вещество теряет половину своей плотности;
  • Момент импульса равен ½, что делает его фермионом;
  • Скрытая теплота парообразования составляет 0,026 КДж/Моль;

Спустя пять лет после открытия Марка Олифанта его теоретические построения получили экспериментальное подтверждение. А еще спустя 9 лет ученым удалось получить соединение в жидком виде . Как оказалось, в таком агрегатном состоянии гелий-3 обладает сверхтекучими свойствами.

Другими словами, при температурах, близких к абсолютному нулю, он способен проникать сквозь капилляры и узкие щели, практически не испытывая противодействия силы трения.

Добыча гелия-3 на Луне

Солнечный ветер на протяжении миллиардов лет нанес в поверхностный слой реголита гигантское количество гелия-3. Согласно оценкам, его количество на земном спутнике может достигать 10 миллионов тонн.

Многие космические державы имеют программу добычи этого вещества для целей последующего термоядерного синтеза:

  • В январе 2006 года российская компания «Энергия» заявила о планах начать геологические работы на Луне к 2020 году. Сегодня будущее проекта находится в подвешенном состоянии, из-за тяжелого экономического положения страны;
  • В 2008 году Индийская организация космических исследований отправила к поверхности земного спутника зонд, одной из целей которого было заявлено изучение гелий-содержащих минералов;
  • Собственные виды на залежи драгоценного сырья имеет и Китай. Согласно планам, предполагается отправлять к спутнику ежегодно три челнока. Энергия, произведенная из этого топлива, с лихвой покроет потребности всего человечества.

Пока остается мечтой, которую можно увидеть разве что в научно-фантастических лентах. Среди них - «Луна» (2009) и «Железное небо» (2012).

В данном видео физик Борис Романов расскажет, в каком виде находится вещество гелий-3 на Луне, возможно ли его оттуда импортировать:

Геохимические данные

Изотоп также присутствует на планете Земля, хотя и в меньших количествах:

  • Это главная составляющая земной мантии, которая была синтезирована еще во время планетообразования. Совокупная ее масса в этой части планеты составляет, по различным оценкам, от 0,1 до 1 миллиона тонн;
  • На поверхность он выходит в результате деятельности вулканов. Так, сопки Гавайских островов выделяют около 300 граммов этого вещества в год. Срединно-океанические хребты - около 3 килограммов;
  • В местах наезда одной литосферной плиты на другую могут находиться сотни тысяч тонн гелиевого изотопа. Извлечь это богатство промышленным способом на современном этапе технологического развития не представляется возможным;
  • Природа продолжает производство данного соединения до сих пор, в результате распада радиоактивных элементов в коре и мантии;
  • В довольно небольших количествах (до 0,5%) его можно найти в некоторых источниках природного газа. Как отмечают эксперты, ежегодно в процессе транспортировки природного газа происходит отделение 26 м 3 гелия-3;
  • Также он присутствует в земной атмосфере. Удельная доля его составляет приблизительно 7,2 частей на триллион атомов прочих газов атмосферы. Согласно последним подсчетам, общая масса атмосферного 3 2 he достигает минимум 37 тысяч тонн.

Современное использование вещества

Практически весь используемый в народном хозяйстве изотоп получают путем радиоактивного распада трития, который бомбардируют нейтронами лития-6 в ядерном реакторе.

На протяжении десятков лет гелий-3 был всего-навсего побочным продуктом при изготовлении боеголовок атомного оружия . Однако после подписания договора СНВ-1 в 1991 году сверхдержавы снизили объемы изготовления ракет, из-за чего продукты производства также пошли на убыль.

Сегодня масштабы производства изотопа находятся на подъеме, поскольку ему нашли новое применение:

  1. Благодаря относительно высокому гиромагнитному соотношению, частицы этого вещества применяются при медицинской томографии легких. Пациент вдыхает газовую смесь, содержащую гиперполяризованные атомы гелия-3. Затем под воздействием лазерного излучения инфракрасного диапазона компьютер рисует анатомические и функциональные изображения органов;
  2. В научных лабораториях данное соединение используется в криогенных целях. Путем его испарения с поверхности холодильника удается достичь значений, близких к 0,2 кельвина;
  3. В последние годы набирает популярность идея использования вещества в качестве сырья для электростанций. Первая подобная установка была построена в 2010 году в долине Теннеси (США).

Гелий-3 как топливо

Второй, пересмотренный подход к использованию контролируемой термоядерной энергии предполагает использование в качестве сырья 3 2 he и дейтерия. Результатом такой реакции будет ион гелия-4 и высокоэнергетические протоны.

Теоретически данная технология обладает такими преимуществами:

  1. Высокий КПД, поскольку для контроля за слиянием ионов используется электростатическое поле. Кинетическая энергия протонов напрямую преобразуется в электричество за счет твердотельного преобразования. Нет необходимости строить турбины, которые используются в АЭС для превращения энергии протонов в тепло;
  2. Более низкие, в сравнении с прочими типами электростанций, капитальные и эксплуатационные затраты;
  3. Ни воздух, ни вода не загрязняются;
  4. Относительно малые габариты благодаря использованию современных компактных установок;
  5. Отсутствует радиоактивное топливо.

Однако критики отмечают значительную «сырость» такого решения. В самом лучшем случае коммерческое использование термоядерного синтеза начнется не ранее 2050 года .

Среди всех изотопов химического элемента с порядковым номером 2 особняком стоит гелий-3. Что это, вкратце можно описать следующими свойствами: он стабилен (то есть не испытывает превращений в результате излучения), обладает сверхтекучими свойствами в жидком виде, имеет относительно малую массу.

Видео про образование гелия-3 во Вселенной

В данном ролике физик Даниил Потапов расскажет, как во Вселенной образовался гелий-3, какую роль в формировании вселенной он играл: