Статистическая физика и термодинамика. Статистическая физика

Статистическая физика занимает видное место в современной науке и заслуживает специального рассмотрения. Она описывает образование из движений частиц параметров макросистем. Например, такие термодинамические параметры, как температура и давление, сводятся к импульсноэнергетическим признакам молекул. Делает она это посредством задания некоторого вероятностного распределения. Прилагательное «статистическая» восходит к латинскому слову status (русское - состояние). Одного этого слова недостаточно для выражения специфики статистической физики. Действительно, любая физическая наука изучает состояния физических процессов и тел. Статистическая же физика имеет дело с ансамблем состояний. Ансамбль в рассматриваемом случае предполагает множество состояний, но не любых, а соотносящихся с одним и тем же совокупным состоянием, обладающим интегративными признаками. Таким образом, статистическая физика включает иерархию двух уровней, которые часто называют микроскопическим и макроскопическим. Соответственно в ней рассматривается соотношение микро- и макросостояний. Упомянутые выше интегративные признаки конституируются лишь в случае, если число микросостояний достаточно большое. Для конкретных состояний оно обладает нижней и верхней границей, определение которых является специальной задачей.

Как уже отмечалось, характерная черта статистического подхода состоит в необходимости обращения к понятию вероятности. С помощью функций распределения рассчитываются статистические средние значения (математические ожидания) тех или иных признаков, которые присущи, по определению, как микро-, так и макроуровню. Связь между двумя уровнями приобретает особенно отчетливый вид. Вероятностной мерой макросостояний оказывается энтропия (S ). Согласно формуле Больцмана, она прямо пропорциональна статистическому весу, т.е. числу способов осуществления данного макроскопического состояния (Р ):

Наибольшей же энтропия является в состоянии равновесия статистической системы.

Статистический проект был разработан в рамках классической физики. Казалось, что он неприменим в квантовой физике. В действительности же ситуация оказалась принципиально другой: в квантовой области статистическая физика не ограничивается классическими представлениями и приобретает более универсальный характер. Но само содержание статистического метода существенно уточняется.

Решающее значение для судеб статистического метода в квантовой физике имеет характер волновой функции. Она определяет не величины физических параметров, а вероятностный закон их распределения. Л это означает, что выполнено главное условие статистической физики, т.е. задание вероятностного распределения. Его наличие является необходимым и, видимо, достаточным условием успешного распространения статистического подхода на всю сферу квантовой физики.

В области классической физики казалось, что статистический подход не обязателен, а если он используется, то лишь в связи с временным отсутствием методов, по-настоящему адекватных природе физических процессов. Динамические законы, посредством которых осуществляется однозначная предсказуемость, актуальнее статистических закономерностей.

Будущая физика дескать позволит объяснить статистические законы при помощи динамических. Но развитие квантовой физики преподнесло ученым явный сюрприз.

В действительности выяснилось первенство не динамических, а статистических законов. Именно статистические закономерности позволили объяснить динамические законы. Так называемое однозначное описание является просто фиксацией событий, которые происходят с наибольшей вероятностью. Актуален не однозначный лапласовский, а вероятностный детерминизм (см. парадокс 4 из параграфа 2.8).

Квантовая физика по самому своему существу является статистической теорией. Это обстоятельство свидетельствует о непреходящем значении статистической физики. В классической физике статистический подход не требует решения уравнений движения. Поэтому создается впечатление, что он по существу своему является не динамическим, а феноменологическим. Теория отвечает на вопрос «Как происходят процессы?», но не на вопрос «Почему они происходят именно так, а не по-иному?». Квантовая физика придает статистическому подходу динамический характер, феноменология приобретает вторичный характер.

В результате изучения материала главы 9 студент должен: знать основные постулаты статистической термодинамики; уметь рассчитывать суммы по состояниям и знать их свойства; пользоваться терминами и определениями, приведенными в главе;

владеть специальной терминологией; навыками расчета термодинамических функций идеальных газов статистическими методами.

Основные постулаты статистической термодинамики

Термодинамический метод не применим к системам, состоящих из малого числа молекул, так как в таких системах исчезает различие между теплотой и работой. Одновременно исчезает однозначность направления процесса:

Для очень малого числа молекул оба направления процесса становятся равноценными. Для изолированной системы - приращение энтропии или равно приведенной теплоте (для равновесно-обратимых процессов), или больше ее (для неравновесных). Такая дуалистичность энтропии может быть объяснена с точки зрения упорядоченности - неупорядоченности движения или состояния составляющих систему частиц; следовательно, качественно энтропию можно рассматривать как меру неупорядоченности молекулярного состояния системы. Эти качественные представления количественно развиваются статистической термодинамикой. Статистическая термодинамика является частью более общего раздела науки - статистической механики.

Основные принципы статистической механики были развиты в конце XIX в. в трудах Л. Больцмана и Дж. Гиббса.

При описании систем, состоящих из большого числа частиц, можно использовать два подхода: микроскопический и макроскопический. Макроскопический подход используется классической термодинамикой, где состояния систем, содержащих единственное чистое вещество, определяется в общем случае тремя независимыми переменными: Т (температура), V (объем), N (число частиц). Однако, с микроскопической точки зрения, система, содержащая 1 моль вещества, включает 6,02 10 23 молекул. Кроме того, в первом подходе подробно характеризуется микросостояние системы,

например координаты и импульсы каждой частицы в каждый момент времени. Микроскопическое описание требует решения классических или квантовых уравнений движения для огромного числа переменных. Так, каждое микросостояние идеального газа в классической механике описывается 6N переменными (N - число частиц): ЗN координат и ЗN проекций импульса.

Если система находится в равновесном состоянии, то ее макроскопические параметры постоянны, тогда как микроскопические параметры изменяются со временем. Это означает, что каждому макросостоянию соответствует несколько (на самом деле - бесконечно много) микросостояний (рис. 9.1).

Рис. 9.1.

Статистическая термодинамика устанавливает связь между этими двумя подходами. Основная идея заключается в следующем: если каждому макросостоянию соответствует много микросостояиий, то каждое из них вносит в макросостояние свой вклад. Тогда свойства макросостояния можно рассчитать как среднее но всем микросостояниям, т.е. суммируя их вклады с учетом статистического веса.

Усреднение по микросостояниям проводят с использованием понятия статистического ансамбля. Ансамбль - это бесконечный набор идентичных систем, находящихся во всех возможных микросостояниях, соответствующих одному макросостоянию. Каждая система ансамбля - это одно микросостояние. Весь ансамбль описывается некоторой функцией распределения по координатам и импульсам р(р, q , t), которая определяется следующим образом: р(p, q, t)dpdq - это вероятность того, что система ансамбля находится в элементе объема dpdq вблизи точки (р , q) в момент времени t.

Смысл функции распределения состоит в том, что она определяет статистический вес каждого микросостояния в макросостояпии.

Из определения следуют элементарные свойства функции распределения:

Многие макроскопические свойства системы можно определить как среднее значение функций координат и импульсов f(p, q) по ансамблю:

Например, внутренняя энергия - это среднее значение функции Гамильтона Н(р, q):

(9.4)

Существование функции распределения составляет суть основного постулата классической статистической механики: макроскопическое состояние системы полностью задается некоторой функцией распределения , которая удовлетворяет условиям (9.1) и (9.2).

Для равновесных систем и равновесных ансамблей функция распределения не зависит явно от времени: р = р(p, q). Явный вид функции распределения зависит от типа ансамбля. Различают три основных тина ансамблей:

где k = 1,38 10 -23 Дж/К - постоянная Больцмана. Значение константы в выражении (9.6) определяется условием нормировки.

Частным случаем канонического распределения (9.6) является распределение Максвелла по скоростям ь которое справедливо для газов:

(9.7)

где m - масса молекулы газа. Выражение р(v)dv описывает вероятность того, что молекула имеет абсолютное значение скорости в интервале от v до v + d&. Максимум функции (9.7) дает наиболее вероятную скорость молекул, а интеграл

среднюю скорость молекул.

Если система имеет дискретные уровни энергии и описывается квантовомеханически, то вместо функции Гамильтона Н(р, q) используют оператор Гамильтона Н, а вместо функции распределения - оператор матрицы плотности р:

(9.9)

Диагональные элементы матрицы плотности дают вероятность того, что система находится в і-м энергетическом состоянии и имеет энергию Е{.

(9.10)

Значение константы определяется условием нормировки:

(9.11)

Знаменатель этого выражения называют суммой по состояниям. Он имеет ключевое значение для статистической оценки термодинамических свойств системы. Из выражений (9.10) и (9.11) можно найти число частиц N jf имеющих энергию

(9.12)

где N - общее число частиц. Распределение частиц (9.12) по уровням энергии называют распределением Больцмана, а числитель этого распределения - больцмановским фактором (множителем). Иногда это распределение записывают в другом виде: если существует несколько уровней с одинаковой энергией £, то их объединяют в одну группу путем суммирования больцмановских множителей:

(9.13)

где gj - число уровней с энергией Ej , или статистический вес.

Многие макроскопические параметры термодинамической системы можно вычислить с помощью распределения Больцмана. Например, средняя энергия определяется как среднее по уровням энергии с учетом их статистических весов:

(9.14)

3) большой канонический ансамбль описывает открытые системы, находящиеся в тепловом равновесии и способные обмениваться веществом с окружающей средой. Тепловое равновесие характеризуется температурой Т, а равновесие по числу частиц - химическим потенциалом р. Поэтому функция распределения зависит от температуры и химического потенциала. Явное выражение для функции распределения большого канонического ансамбля мы здесь использовать не будем.

В статистической теории доказывается, что для систем с большим числом частиц (~10 23) все три типа ансамблей эквивалентны друг другу. Использование любого ансамбля приводит к одним и тем же термодинамическим свойствам, поэтому выбор того или иного ансамбля описания термодинамической системы диктуется только удобством математической обработки функций распределения.

Определение 1

Статистическая термодинамика – обширный раздел статистической физики, который формулирует законы, связывающие все молекулярные свойства физических веществ с измеряемыми в ходе экспериментов величинами.

Рисунок 1. Статистическая термодинамика гибких молекул. Автор24 - интернет-биржа студенческих работ

Статистическое изучение материальных тел посвящено обоснованию постулатов и методов термодинамики равновесных концепций и вычислению важных функций по молекулярным постоянным. Основу данного научного направления составляют гипотезы и подтвержденные опытами предположения.

В отличие от классической механики, в статистической термодинамике изучаются только средние показания координат и внутренних импульсов, а также возможность появления новых значений. Термодинамические свойства макроскопической среды рассматриваются как общие параметры случайных характеристик или величин.

На сегодняшний день ученые различают классическую (Больцман, Максвелл), и квантовую (Дирак, Ферми, Эйнштейн) термодинамику. Основная теория статистического исследования: существует однозначная и стабильная взаимосвязь молекулярных особенностей частиц, которые составляют конкретную систему.

Определение 2

Ансамбль в термодинамике – практически бесконечное количество термодинамических концепций, которые находятся в различных, равновероятных микросостояниях.

Средние параметры физически наблюдаемого элемента за большой период времени начинает приравниваться к общему значению по ансамблю.

Основная идея статистической термодинамики

Рисунок 2. Статистическая формулировка 2 закона термодинамики. Автор24 - интернет-биржа студенческих работ

Статистическая термодинамика устанавливает и реализует взаимодействие микроскопической и макроскопической систем. В первом научном подходе, базирующемся на классической или квантовой механике, детально описываются внутренние состояния среды в виде координат и импульса каждой отдельной частицы в определенный момент времени. Микроскопическая формулировка требует решения сложных уравнений движения для множества переменных.

Макроскопический метод, используемый классической термодинамика, характеризует исключительно внешнее состояние системы и применяет для этого небольшое количество переменных:

  • температуру физического тела;
  • объем взаимодействующих элементов;
  • число элементарных частиц.

Если все вещества находятся в равновесном состоянии, то их макроскопические показатели будут постоянны, а микроскопические коэффициенты постепенно видоизменяться. Это означает, что каждому состоянию в статистической термодинамике соответствует несколько микросостояний.

Замечание 1

Основная идея изучаемого раздела физики заключается в следующем: если каждому положению физических тел соответствует много микросостояний, то каждое из них в результате вносит в общее макросостояние весомый вклад.

Из этого определения следует выделить элементарные свойства функции статистического распределения:

  • нормировка;
  • положительная определенность;
  • среднее значение функции Гамильтона.

Усреднение по существующим микросостояниям проводят с применением понятия статистического ансамбля, находящегося в любых микросостояниях, соответствующих одному макросостоянию. Смысл данной функции распределения состоит в том, что она в целом определяет статистический вес каждого состояния концепции.

Основные понятия в статистической термодинамике

Для статистического и грамотного описания макроскопических систем ученые используют данные ансамбля и фазового пространства, что позволяет решить классические и квантовые задачи методом теории вероятности. Микроканонический ансамбль Гиббса зачастую используется при исследовании изолированных систем, имеющих постоянный объем и количество одинаково заряженных частиц. Данный способ применяется для тщательного описания систем стабильного объема, которые находятся в тепловом равновесии с окружающей средой при постоянном показателе элементарных частиц. Параметры состояния большого ансамбля позволяют определить химический потенциал материальных веществ. Изобарно-изотермическая система Гиббса используется для объяснения взаимодействия тел, находящихся в тепловом и механическом равновесии в определенном пространстве при постоянном давлении.

Фазовое пространство в статистической термодинамике характеризует механико-многомерное пространство, осями которого выступают все обобщенные координаты и сопряженные им внутренние импульсы системы с постоянными степенями свободы. Для состоящей из атомов системы, показатели которой соответствуют декартовой координате, совокупность параметров и тепловой энергии будет обозначаться соответственно начальному состоянию. Действие каждой концепции изображается точкой в фазовом пространстве, а изменение макросостояния во времени - движением точки вдоль траектории конкретной линии. Для статистического описания свойств окружающей среды вводятся понятия функции распределения и фазового объема, характеризующих плотность вероятности нахождения новой точки, изображающей реальное состояние системы, а также в веществе вблизи линии с определенными координатами.

Замечание 2

В квантовой механике вместо фазового объема применяют понятие дискретного энергетического спектра системы конечного объема, так как этот процесс определяется не координатами и импульсом, а волновой функцией, которой в динамическом состоянии соответствует весь спектр квантовых состояний.

Функция распределения классической системы определят возможность реализации конкретного микросостояния в одном элементе объема фазовой среды. Вероятность нахождения частиц в бесконечно малом пространстве возможно сравнить с интегрированием элементов по координатам и импульсам системы. Состояние термодинамического равновесия следует рассматривать как предельный показатель всех веществ, где для функции распределения возникают решения уравнения движения составляющих концепцию частиц. Вид такого функционала, который одинаков для квантовой и классической системы, был впервые установлен физиком-теоретиком Дж. Гиббсом.

Вычисления статистической функции в термодинамике

Для правильного вычисления термодинамической функции необходимо применить любое физическое распределение: все элементы в системе эквивалентны друг другу и соответствуют разным внешним условиям. Микроканоническое распределение Гиббса используется главным образом в теоретических исследованиях. Для решения конкретных и более сложных задач рассматривают ансамбли, которые обладают энергией со средой и могут осуществлять обмен частицами и энергией. Данный метод очень удобен при исследовании фазового и химического равновесий.

Статистические суммы позволяют ученым точно определить энергию и термодинамические свойства системы, полученные с помощью дифференцирования показателей по соответствующим параметрам. Все эти величины приобретают статистический смысл. Так, внутренний потенциал материального тела отождествляется со средней энергией концепции, что позволяет изучать первое начало термодинамики, как основной закон сохранения энергии при нестабильном движении составляющих систему элементов. Свободная энергия напрямую связана со статистической суммой системы, а энтропия - с количеством микросостояний в конкретном макросостоянии, следовательно, с его вероятностью.

Смысл энтропии, как меры возникновения нового состояния, сохраняется в связи с произвольным параметром. В состоянии полного равновесия энтропия изолированной системы имеет максимальное значение при изначально правильно заданных внешних условиях, то есть равновесное общего состояние является вероятным результатом с максимально статистическим весом. Поэтому плавный переход из неравновесной позиции в равновесную есть процесс изменения в более реальное состояние.

В этом заключается статистический смысл закона возрастания внутренней энтропии, согласно которому параметры замкнутой системы увеличиваются. При температуре абсолютного нуля любая концепция находится в стабильном состоянии. Это научное утверждение представляет собой третье начало термодинамики. Стоит отметить, что для однозначной формулировки энтропии необходимо пользоваться только квантовым описанием, так как в классической статистике данный коэффициент определен с максимальной точностью до произвольного слагаемого.

Раздел физики, посвящённый изучению св в макроскопич. тел, т. е. систем, состоящих из очень большого числа одинаковых ч ц (молекул, атомов, эл нов и т. д.), исходя из св в этих ч ц и вз ствий между ними. Изучением макроскопич. тел занимаются и др … Физическая энциклопедия

- (статистическая механика), раздел физики, изучающий свойства макроскопических тел (газов, жидкостей, твердых тел) как систем из очень большого (порядка числа Авогадро, т.е. 1023 моль 1) числа частиц (молекул, атомов, электронов). В статистической … Современная энциклопедия

- (статистическая механика) раздел физики, изучающий свойства макроскопических тел как систем из очень большого числа частиц (молекул, атомов, электронов). В статистической физике применяют статистические методы, основанные на теории вероятностей.… … Большой Энциклопедический словарь

Статистическая физика - (статистическая механика), раздел физики, изучающий свойства макроскопических тел (газов, жидкостей, твердых тел) как систем из очень большого (порядка числа Авогадро, т.е. 1023 моль 1) числа частиц (молекул, атомов, электронов). В… … Иллюстрированный энциклопедический словарь

Сущ., кол во синонимов: 2 статы (2) физика (55) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

СТАТИСТИЧЕСКАЯ ФИЗИКА - раздел теоретической физики, изучающий свойства сложных систем газов, жидкостей, твёрдых тел и их связь со свойствами отдельных частиц электронов, атомов и молекул, из которых эти системы состоят. Основная задача С. ф.: нахождение функций… … Большая политехническая энциклопедия

- (статистическая механика), раздел физики, изучающий свойства макроскопических тел как систем из очень большого числа частиц (молекул, атомов, электронов). В статистической физике применяют статистические методы, базирующиеся на теории… … Энциклопедический словарь

Раздел физики, задача которого выразить свойства макроскопических тел, т. е. систем, состоящих из очень большого числа одинаковых частиц (молекул, атомов, электронов и т.д.), через свойства этих частиц и взаимодействие между ними.… … Большая советская энциклопедия

статистическая физика - statistinė fizika statusas T sritis fizika atitikmenys: angl. statistical physics vok. statistische Physik, f rus. статистическая физика, f pranc. physique statistique, f … Fizikos terminų žodynas

- (статистическая механика), раздел физики, изучающий свойства макроскопич. тел как систем из очень большого числа частиц (молекул, атомов, электронов). В С. ф. применяют статистич. методы, базирующиеся на теории вероятностей. С. ф. разделщотла… … Естествознание. Энциклопедический словарь

Книги

  • Статистическая физика , Климонтович Ю.Л.. Данный курс отличается от существующих как по содержанию, так и по характеру изложения. Весь материал излагается на основе единого метода - теория неравновесного состояния служит стержнем…
  • Статистическая физика , Л. Д. Ландау, Е. М. Лифшиц. Издание 1964 года. Сохранность хорошая. В книге дано ясное изложение общих принципов статики и по возможности более полное изложение их многочисленных применений. Второе издание дополняет…

Термодинамика. Работы Майера, Джоуля, Гельмгольца позволили выработать так называемый. “закон сохранения сил” (понятия «сила» и «энергия» в то время еще строго не различались). Однако первая ясная формулировка этого закона была получена физиками Р. Клаузиусом и У. Томсоном (лордом Кельвином) на основе анализа исследования работы тепловой машины, которое провел С. Карно. Рассматривая превращения теплоты и работы макроскопических системах С. Карно фактически положил начало новой науке, которую Томсон впоследствии назвал термодинамикой. Термодинамика ограничивается изучением особенностей превращения тепловой формы движения в другие, не интересуясь вопросами микроскопического движения частиц, составляющих вещество.

Термодинамика, таким образом, рассматривает системы, между которыми возможен обмен энергией, без учета микроскопического строения тел, составляющих систему, и характеристик отдельных частиц. Различают термодинамику равновесных систем или систем, переходящих к равновесию (классическая, или равновесная термодинамика) и термодинамику неравновесных систем (неравновесная термодинамика). Классическая термодинамика чаще всего называется просто термодинамикой и именно она составляет основу так называемой Термодинамической Картины Мира (ТКМ), которая сформировалась к середине 19 в. Неравновесная термодинамика получила развитие во второй половине 20-го века и играет особую роль при рассмотрении биологических систем и феномена жизни в целом.

Таким образом, при исследовании тепловых явлений выделились два научных направления:

1. Термодинамика, изучающая тепловые процессы без учета молекулярного строения вещества;

2. Молекулярно-кинетическая теория (развитие кинетической теории вещества в противовес теории теплорода);

Молекулярно-кинетическая теория. В отличие от термодинамики молекулярно-кинетическая теория характеризуется рассмотрением различных макроскопических проявлений систем как результатов суммарного действия огромной совокупности хаотически движущихся молекул. Молекулярно-кинетическая теория использует статистический метод, интересуясь не движением отдельных молекул, а только средними величинами, которые характеризуют движение огромной совокупности частиц. Отсюда второе название молекулярно-кинетической теории – статистическая физика.

Первое начало термодинамики. Опираясь на работы Джоуля и Майера, Клаузнус впервые высказал мысль, сформировавшуюся впоследствии в первое начало термодинамики. Он сделал вывод, что всякое тело имеет внутреннюю энергию U . Клаузиус назвал ее теплом, содержащимся в теле, в отличие от “тепла Q, сообщенного телу”. Внутреннюю энергию можно увеличить двумя эквивалентными способами: проведя над телом механическую работу -А, или сообщая ему количество теплоты Q.



В 1860 г. У. Томсон окончательно заменив устаревший термин “сила” термином “энергия”, записывает первое начало термодинамики в следующей формулировке:

Количество теплоты, сообщенное газу, идет на увеличение внутренней энергии газа и совершение газом внешней работы (рис.1).

Для бесконечно малых изменений имеем

Первое начало термодинамики, или закон сохранения энергии, утверждает баланс энергии и работы. Его роль можно сравнить с ролью своеобразного «бухгалтера» при взаимопревращения различных видов энергии друг в друга.

Если процесс циклический, система возвращается в исходное состояние и U1 = U2 , a dU = 0. В этом случае все подведенное тепло идет на совершение внешней работы. Если при этом и Q = 0, то и А = 0, т.е. невозможен процесс, единственным результатом которого является производство работы без каких-либо изменений в других телах, т.е. работа «вечного двигателя» (perpetuum mobile).

Майер в своей работе составил таблицу всех рассмотренных им “сил” (энергий) природы и привел 25 случаев их превращений (тепло ® механическая работа ® электричество, химическая «сила» вещества ® теплота, электричество). Майер распространил положение о сохранении и превращении энергии и на живые организмы (поглощение пищи ® химические процессы ® тепловые и механические эффекты). Эти примеры впоследствии были подкреплены работами Гесса (1840 г.), в которых исследовалось превращение химической энергии в теплоту, а также Фарадея, Ленца и Джоуля, в результате которых был сформулирован закон Джоуля-Ленца (1845) о связи электрической и тепловой энергии Q = J2Rt.

Таким образом, постепенно, на протяжении более четырех десятилетий сформировался один из самых великих принципов современной науки, приведший к объединению самых различных явлений природы. Этот принцип заключается в следующем: Существует определенная величина, называемая энергией, которая не меняется ни при каких превращениях, происходящих в природе. Исключений из закона сохранения энергии не существует.

Контрольные вопросы

1. Почему исследование тепловых явлений и фазовых переходов выявило несостоятельность лапласовского детерминизма?

2. Что такое микропараметры, макропараметры при исследовании тепловых явлений?

3. С чем было связано изучение тепловых явлений и когда оно началось?

4. Назовите ученых, чьи труды легли в основу физики тепловых явлений.

5. Что такое консервативные силы? Диссипативные силы? Приведите примеры.

6. Для каких систем справедлив закон сохранения механической энергии?

7. Что такое потенциальная энергия? Только ли к механическим системам применимо понятие потенциальной энергии? Поясните.

8. Объясните кратко теорию теплорода.

9. Какие опыты, опровергающие теорию теплорода, были проведены Румфордом?

10. Почему теплоемкости газа в процессах при постоянном давлении (Ср) и при постоянном объеме (Сv) неодинаковы? Кто из ученых впервые обнаружил этот факт?

11. Что такое термодинамика? Что она изучает?

12. Что изучает молекулярно-кинетическая теория?

13. Что такое статистическая физика? Откуда такое название?

14. Сформулируйте первое начало термодинамики.

15. С чем (кем) можно образно сравнить первое начало термодинамики?

Литература

1. Дягилев Ф.М. Концепции современного естествознания. – М.: Изд. ИМПЭ, 1998.

2. Концепции современного естествознания./ под ред. проф. С.А. Самыгина, 2-е изд. – Ростов н/Д: «Феникс», 1999.

3. Дубнищева Т.Я.. Концепции современного естествознания. Новосибирск: Изд-во ЮКЭА, 1997.

4. Ремизов А.Н. Медицинская и биологическая физика. – М.: Высшая школа, 1999.